Mitigation of multi-scale biases in cell-type deconvolution for spatially resolved transcriptomics using HarmoDecon.

IF 5.4
Zirui Wang, Ke Xu, Yang Liu, Yu Xu, Lu Zhang
{"title":"Mitigation of multi-scale biases in cell-type deconvolution for spatially resolved transcriptomics using HarmoDecon.","authors":"Zirui Wang, Ke Xu, Yang Liu, Yu Xu, Lu Zhang","doi":"10.1093/bioinformatics/btaf451","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The advent of spatially resolved transcriptomics (SRT) has revolutionized our understanding of tissue molecular microenvironments by enabling the study of gene expression in its spatial context. However, many SRT platforms lack single-cell resolution, necessitating cell-type deconvolution methods to estimate cell-type proportions in SRT spots. Despite advancements in existing tools, these methods have not addressed biases occurring at three scales: individual spots, entire tissue samples, and discrepancies between SRT and reference scRNA-seq datasets. These biases result in overbalanced cell-type proportions for each spot, mismatched cell-type fractions at the sample level, and data distribution shifts across platforms.</p><p><strong>Results: </strong>To mitigate these biases, we introduce HarmoDecon, a novel semi-supervised deep learning model for spatial cell-type deconvolution. HarmoDecon leverages pseudo-spots derived from scRNA-seq data and uses Gaussian Mixture Graph Convolutional Networks to address the aforementioned issues. Through extensive simulations on multi-cell spots from STARmap and osmFISH, HarmoDecon outperformed 11 state-of-the-art methods. Additionally, when applied to legacy SRT platforms and 10x Visium datasets, HarmoDecon achieved the highest accuracy in spatial domain clustering and maintained strong correlations between cancer marker genes and cancer cells in human breast cancer samples. These results highlight the utility of HarmoDecon in advancing spatial transcriptomics analysis.</p><p><strong>Availability and implementation: </strong>The HarmoDecon scripts, with the detailed tutorials, are available at https://github.com/ericcombiolab/HarmoDecon/tree/main.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The advent of spatially resolved transcriptomics (SRT) has revolutionized our understanding of tissue molecular microenvironments by enabling the study of gene expression in its spatial context. However, many SRT platforms lack single-cell resolution, necessitating cell-type deconvolution methods to estimate cell-type proportions in SRT spots. Despite advancements in existing tools, these methods have not addressed biases occurring at three scales: individual spots, entire tissue samples, and discrepancies between SRT and reference scRNA-seq datasets. These biases result in overbalanced cell-type proportions for each spot, mismatched cell-type fractions at the sample level, and data distribution shifts across platforms.

Results: To mitigate these biases, we introduce HarmoDecon, a novel semi-supervised deep learning model for spatial cell-type deconvolution. HarmoDecon leverages pseudo-spots derived from scRNA-seq data and uses Gaussian Mixture Graph Convolutional Networks to address the aforementioned issues. Through extensive simulations on multi-cell spots from STARmap and osmFISH, HarmoDecon outperformed 11 state-of-the-art methods. Additionally, when applied to legacy SRT platforms and 10x Visium datasets, HarmoDecon achieved the highest accuracy in spatial domain clustering and maintained strong correlations between cancer marker genes and cancer cells in human breast cancer samples. These results highlight the utility of HarmoDecon in advancing spatial transcriptomics analysis.

Availability and implementation: The HarmoDecon scripts, with the detailed tutorials, are available at https://github.com/ericcombiolab/HarmoDecon/tree/main.

使用HarmoDecon缓解空间分解转录组学细胞型反褶积的多尺度偏差。
研究动机:空间解析转录组学(SRT)的出现,通过在空间背景下研究基因表达,彻底改变了我们对组织分子微环境的理解。然而,许多SRT平台缺乏单细胞分辨率,需要使用细胞型反卷积方法来估计SRT点中的细胞型比例。尽管现有工具取得了进步,但这些方法并没有解决在三个尺度上发生的偏差:单个斑点、整个组织样本以及SRT和参考scRNA-seq数据集之间的差异。这些偏差导致每个点的细胞类型比例失衡,样本水平上的细胞类型分数不匹配,以及数据在不同平台上的分布变化。为了减轻这些偏差,我们引入了一种新的半监督深度学习模型HarmoDecon,用于空间细胞型反卷积。HarmoDecon利用来自scRNA-seq数据的伪点,并使用高斯混合图卷积网络来解决上述问题。通过STARmap和osmFISH在多单元点上的广泛模拟,HarmoDecon优于11种最先进的方法。此外,当应用于传统SRT平台和10倍Visium数据集时,HarmoDecon在空间域聚类方面取得了最高的准确性,并在人类乳腺癌样本中保持了癌症标记基因和癌细胞之间的强相关性。这些结果突出了HarmoDecon在推进空间转录组学分析中的应用。可用性和实施:HarmoDecon脚本以及详细的教程可在https://github.com/ericcombiolab/HarmoDecon/tree/main.Supplementary上获得:补充数据可在生物信息学杂志在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信