Synthetic spike-in metabarcoding for plant pathogen diagnostics results in precise quantification of copy number within the genus Fusarium.

IF 6.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-07-20 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf124
Peter Oppenheimer, Francesco Tini, Rebecca Whetten, Imane Laraba, Quentin Read, Briana Whitaker, Martha Vaughan, Giovanni Beccari, Lorenzo Covarelli, Christina Cowger
{"title":"Synthetic spike-in metabarcoding for plant pathogen diagnostics results in precise quantification of copy number within the genus <i>Fusarium</i>.","authors":"Peter Oppenheimer, Francesco Tini, Rebecca Whetten, Imane Laraba, Quentin Read, Briana Whitaker, Martha Vaughan, Giovanni Beccari, Lorenzo Covarelli, Christina Cowger","doi":"10.1093/ismeco/ycaf124","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic spike-in metabarcoding (SSIM) assays generate quantitative next-generation sequencing (NGS) data, but are marred by inconsistency and have seen limited adoption. Previous efforts to develop SSIM assays have focused on the ITS and 16S rRNA genes. This study marks the first use of SSIM as a diagnostic assay to identify and quantify plant-pathogenic species within the genus <i>Fusarium</i> and implements it using the single-copy <i>TEF1</i> gene, which has relatively uniform G + C content and length. We identified variability between species in read quality score as a key source of bias that impacts SSIM to a lesser extent than other quantitative NGS approaches. SSIM was validated against another quantitative NGS assay that utilized qPCR (qMET) to calculate the total gene copy number. The comparison showed that SSIM was both precise (R<sup>2</sup> > 0.93 for three <i>Fusarium</i> species) and proportional (slope ~1) in relation to qMET. Further, we applied SSIM to 24 wheat grain samples from Italy, revealing a diverse array of <i>Fusarium</i> species and associated mycotoxins, with SSIM demonstrating superior predictive accuracy for most toxin concentrations compared to qPCR. Our results underscore the utility of SSIM for pathogen-agnostic diagnostics, with important implications for food safety and management of mycotoxin contamination.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf124"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic spike-in metabarcoding (SSIM) assays generate quantitative next-generation sequencing (NGS) data, but are marred by inconsistency and have seen limited adoption. Previous efforts to develop SSIM assays have focused on the ITS and 16S rRNA genes. This study marks the first use of SSIM as a diagnostic assay to identify and quantify plant-pathogenic species within the genus Fusarium and implements it using the single-copy TEF1 gene, which has relatively uniform G + C content and length. We identified variability between species in read quality score as a key source of bias that impacts SSIM to a lesser extent than other quantitative NGS approaches. SSIM was validated against another quantitative NGS assay that utilized qPCR (qMET) to calculate the total gene copy number. The comparison showed that SSIM was both precise (R2 > 0.93 for three Fusarium species) and proportional (slope ~1) in relation to qMET. Further, we applied SSIM to 24 wheat grain samples from Italy, revealing a diverse array of Fusarium species and associated mycotoxins, with SSIM demonstrating superior predictive accuracy for most toxin concentrations compared to qPCR. Our results underscore the utility of SSIM for pathogen-agnostic diagnostics, with important implications for food safety and management of mycotoxin contamination.

用于植物病原体诊断的合成尖峰元条形码可以精确地定量测定镰刀菌属的拷贝数。
合成峰值元条形码(SSIM)分析产生定量的下一代测序(NGS)数据,但由于不一致而受到损害,并且采用有限。以前开发SSIM分析的努力主要集中在ITS和16S rRNA基因上。本研究首次将SSIM作为鉴定和定量镰刀菌属植物病原物种的诊断方法,并使用具有相对统一的G + C含量和长度的单拷贝TEF1基因来实现。我们发现物种之间的阅读质量评分差异是影响SSIM的主要偏差来源,其影响程度低于其他定量NGS方法。利用qPCR (qMET)计算基因总拷贝数,对另一种定量NGS分析验证了SSIM。比较表明,相对于qMET, SSIM既精确(3种镰刀菌的R2为>.93)又成比例(斜率为1)。此外,我们将SSIM应用于来自意大利的24个小麦颗粒样本,揭示了镰刀菌种类和相关真菌毒素的多样性,与qPCR相比,SSIM对大多数毒素浓度的预测精度更高。我们的研究结果强调了SSIM在病原体诊断中的应用,对食品安全和霉菌毒素污染管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信