{"title":"robin2: accelerating single-cell data clustering evaluation.","authors":"Valeria Policastro, Dario Righelli, Luisa Cutillo, Annamaria Carissimo","doi":"10.1093/bioadv/vbaf184","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The rapid expansion of single-cell RNA sequencing (scRNA-seq) technologies has increased the need for robust and scalable clustering evaluation methods. To address these challenges, we developed robin2, an optimized version of our R package robin. It introduces enhanced computational efficiency, support for high-dimensional datasets, and harmonious integration with R's base functionalities for robust network analysis.</p><p><strong>Results: </strong>robin2 offers improved functionality for clustering stability validation and enables systematic evaluation of community detection algorithms across various resolutions and pipelines. The application to Tabula Muris and PBMC scRNA-seq datasets confirmed its ability to identify biologically meaningful cell subpopulations with high statistical significance. The new version reduces computational time by 9-fold on large-scale datasets using parallel processing.</p><p><strong>Availability and implementation: </strong>The robin2 package is freely available on CRAN at https://CRAN.R-project.org/package=robin. Comprehensive documentation and a detailed analysis vignette are available on GitHub at https://drighelli.github.io/scrobinv2/index.html.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf184"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: The rapid expansion of single-cell RNA sequencing (scRNA-seq) technologies has increased the need for robust and scalable clustering evaluation methods. To address these challenges, we developed robin2, an optimized version of our R package robin. It introduces enhanced computational efficiency, support for high-dimensional datasets, and harmonious integration with R's base functionalities for robust network analysis.
Results: robin2 offers improved functionality for clustering stability validation and enables systematic evaluation of community detection algorithms across various resolutions and pipelines. The application to Tabula Muris and PBMC scRNA-seq datasets confirmed its ability to identify biologically meaningful cell subpopulations with high statistical significance. The new version reduces computational time by 9-fold on large-scale datasets using parallel processing.
Availability and implementation: The robin2 package is freely available on CRAN at https://CRAN.R-project.org/package=robin. Comprehensive documentation and a detailed analysis vignette are available on GitHub at https://drighelli.github.io/scrobinv2/index.html.