{"title":"Enhancing end-stage renal disease outcome prediction: a multisourced data-driven approach.","authors":"Yubo Li, Rema Padman","doi":"10.1093/jamia/ocaf118","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To improve prediction of chronic kidney disease (CKD) progression to end-stage renal disease (ESRD) using machine learning (ML) and deep learning (DL) models applied to integrated clinical and claims data with varying observation windows, supported by explainable artificial intelligence (AI) to enhance interpretability and reduce bias.</p><p><strong>Materials and methods: </strong>We utilized data from 10 326 CKD patients, combining clinical and claims information from 2009 to 2018. After preprocessing, cohort identification, and feature engineering, we evaluated multiple statistical, ML and DL models using 5 distinct observation windows. Feature importance and SHapley Additive exPlanations (SHAP) analysis were employed to understand key predictors. Models were tested for robustness, clinical relevance, misclassification patterns, and bias.</p><p><strong>Results: </strong>Integrated data models outperformed single data source models, with long short-term memory achieving the highest area under the receiver operating characteristic curve (AUROC) (0.93) and F1 score (0.65). A 24-month observation window optimally balanced early detection and prediction accuracy. The 2021 estimated glomerular filtration rate (eGFR) equation improved prediction accuracy and reduced racial bias, particularly for African American patients.</p><p><strong>Discussion: </strong>Improved prediction accuracy, interpretability, and bias mitigation strategies have the potential to enhance CKD management, support targeted interventions, and reduce health-care disparities.</p><p><strong>Conclusion: </strong>This study presents a robust framework for predicting ESRD outcomes, improving clinical decision-making through integrated multisourced data and advanced analytics. Future research will expand data integration and extend this framework to other chronic diseases.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf118","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To improve prediction of chronic kidney disease (CKD) progression to end-stage renal disease (ESRD) using machine learning (ML) and deep learning (DL) models applied to integrated clinical and claims data with varying observation windows, supported by explainable artificial intelligence (AI) to enhance interpretability and reduce bias.
Materials and methods: We utilized data from 10 326 CKD patients, combining clinical and claims information from 2009 to 2018. After preprocessing, cohort identification, and feature engineering, we evaluated multiple statistical, ML and DL models using 5 distinct observation windows. Feature importance and SHapley Additive exPlanations (SHAP) analysis were employed to understand key predictors. Models were tested for robustness, clinical relevance, misclassification patterns, and bias.
Results: Integrated data models outperformed single data source models, with long short-term memory achieving the highest area under the receiver operating characteristic curve (AUROC) (0.93) and F1 score (0.65). A 24-month observation window optimally balanced early detection and prediction accuracy. The 2021 estimated glomerular filtration rate (eGFR) equation improved prediction accuracy and reduced racial bias, particularly for African American patients.
Discussion: Improved prediction accuracy, interpretability, and bias mitigation strategies have the potential to enhance CKD management, support targeted interventions, and reduce health-care disparities.
Conclusion: This study presents a robust framework for predicting ESRD outcomes, improving clinical decision-making through integrated multisourced data and advanced analytics. Future research will expand data integration and extend this framework to other chronic diseases.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.