Targeted loss of heterozygosity in Candida albicans using CRISPR-Cas9 reveals the functional impact of allelic variation.

IF 5.1 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2025-10-08 DOI:10.1093/genetics/iyaf154
Philippe C Després, Nicholas C Gervais, Meea Fogal, Ruby K J Rogers, Christina A Cuomo, Rebecca S Shapiro
{"title":"Targeted loss of heterozygosity in Candida albicans using CRISPR-Cas9 reveals the functional impact of allelic variation.","authors":"Philippe C Després, Nicholas C Gervais, Meea Fogal, Ruby K J Rogers, Christina A Cuomo, Rebecca S Shapiro","doi":"10.1093/genetics/iyaf154","DOIUrl":null,"url":null,"abstract":"<p><p>The diploid genome of the fungal pathogen Candida albicans is highly heterozygous, with most allele pairs diverging at either the coding or regulatory level. When faced with selection pressure like antifungal exposure, this hidden genetic diversity can provide a reservoir of adaptive mutations through loss of heterozygosity (LOH) events. Validating the potential phenotypic impact of LOH events observed in clinical or experimentally evolved strains can be difficult due to the challenge of precisely targeting one allele over the other. Here, we show that a CRISPR-Cas9 system can be used to overcome this challenge. By designing allele-specific guide RNA sequences, we can induce targeted, directed LOH events, which we validate by whole-genome long-read sequencing. Using this approach, we efficiently recapitulate a recently described LOH event that increases resistance to the antifungal fluconazole. Additionally, we find that the recombination tracts of these induced LOH events have similar lengths to those observed naturally. To facilitate future use of this method, we provide a database of allele-specific sgRNA sequences for Cas9 that provide near genome-wide coverage of heterozygous sites through either direct or indirect targeting. This approach will be useful in probing the adaptive role of LOH events in this important human pathogen.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf154","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The diploid genome of the fungal pathogen Candida albicans is highly heterozygous, with most allele pairs diverging at either the coding or regulatory level. When faced with selection pressure like antifungal exposure, this hidden genetic diversity can provide a reservoir of adaptive mutations through loss of heterozygosity (LOH) events. Validating the potential phenotypic impact of LOH events observed in clinical or experimentally evolved strains can be difficult due to the challenge of precisely targeting one allele over the other. Here, we show that a CRISPR-Cas9 system can be used to overcome this challenge. By designing allele-specific guide RNA sequences, we can induce targeted, directed LOH events, which we validate by whole-genome long-read sequencing. Using this approach, we efficiently recapitulate a recently described LOH event that increases resistance to the antifungal fluconazole. Additionally, we find that the recombination tracts of these induced LOH events have similar lengths to those observed naturally. To facilitate future use of this method, we provide a database of allele-specific sgRNA sequences for Cas9 that provide near genome-wide coverage of heterozygous sites through either direct or indirect targeting. This approach will be useful in probing the adaptive role of LOH events in this important human pathogen.

利用CRISPR-Cas9靶向丢失白色念珠菌杂合性揭示等位基因变异对功能的影响。
真菌病原体白色念珠菌的二倍体基因组是高度杂合的,大多数等位基因对在编码或调控水平上分化。当面临抗真菌暴露等选择压力时,这种隐藏的遗传多样性可以通过杂合性损失(LOH)事件提供适应性突变的储存库。验证在临床或实验进化菌株中观察到的LOH事件的潜在表型影响可能是困难的,因为精确靶向一个等位基因而不是另一个等位基因的挑战。在这里,我们展示了CRISPR-Cas9系统可以用来克服这一挑战。通过设计等位基因特异性的引导RNA序列,我们可以诱导靶向的、定向的LOH事件,我们通过全基因组长读测序验证了这一点。使用这种方法,我们有效地概括了最近描述的LOH事件,该事件增加了对抗真菌氟康唑的耐药性。此外,我们发现这些诱导LOH事件的重组束具有与自然观察到的相似的长度。为了便于将来使用这种方法,我们为Cas9提供了一个等位基因特异性sgRNA序列数据库,通过直接或间接靶向提供了杂合位点的近全基因组覆盖。这种方法将有助于探索LOH事件在这一重要人类病原体中的适应性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信