Seren S Villwock, Elizabeth Y Parkes, Edwige Gaby Nkouaya Mbanjo, Ismail Y Rabbi, Jean-Luc Jannink
{"title":"Mediated pleiotropy drives the negative correlation of total carotenoid and dry matter contents in cassava (Manihot esculenta).","authors":"Seren S Villwock, Elizabeth Y Parkes, Edwige Gaby Nkouaya Mbanjo, Ismail Y Rabbi, Jean-Luc Jannink","doi":"10.1093/genetics/iyaf162","DOIUrl":null,"url":null,"abstract":"<p><p>Plant breeders aim to increase provitamin A carotenoids in cassava (Manihot esculenta) storage roots to help combat vitamin A deficiency in sub-Saharan Africa, but a negative genetic correlation between total carotenoid and dry matter contents hinders progress. While genetic linkage between a major-effect variant in the phytoene synthase 2 (PSY2) gene and nearby candidate gene(s) has been thought to drive this correlation, molecular evidence suggests there may be a metabolic relationship between total carotenoid and dry matter, implying genome-wide pleiotropic effects. Bivariate genome-wide associations were used to examine the genetic architecture of the negative covariance between traits and test for pleiotropy. A population of 378 accessions in the yellow-fleshed cassava breeding program at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria was genotyped with DArTseqLD and phenotyped in field trials over 10 yr across three locations in Nigeria. Mixed linear models controlling for the previously identified PSY2 causal variant were used to identify multiple new pleiotropic loci. Among 17 jointly associated loci at a relaxed significance threshold, most (11 of 17) affected total carotenoid and dry matter in opposite directions, although this pattern did not reach statistical significance in a binomial test. Even after accounting for these 17 loci as covariates, significantly negative polygenic covariance between total carotenoid and dry matter remained. These findings support the hypothesis that widespread mediated pleiotropy rather than genetic linkage drives the negative genetic correlation between total carotenoid and dry matter in cassava and demonstrate a new application of multivariate genome-wide association study for interrogating the genetic architecture of correlated traits.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf162","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant breeders aim to increase provitamin A carotenoids in cassava (Manihot esculenta) storage roots to help combat vitamin A deficiency in sub-Saharan Africa, but a negative genetic correlation between total carotenoid and dry matter contents hinders progress. While genetic linkage between a major-effect variant in the phytoene synthase 2 (PSY2) gene and nearby candidate gene(s) has been thought to drive this correlation, molecular evidence suggests there may be a metabolic relationship between total carotenoid and dry matter, implying genome-wide pleiotropic effects. Bivariate genome-wide associations were used to examine the genetic architecture of the negative covariance between traits and test for pleiotropy. A population of 378 accessions in the yellow-fleshed cassava breeding program at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria was genotyped with DArTseqLD and phenotyped in field trials over 10 yr across three locations in Nigeria. Mixed linear models controlling for the previously identified PSY2 causal variant were used to identify multiple new pleiotropic loci. Among 17 jointly associated loci at a relaxed significance threshold, most (11 of 17) affected total carotenoid and dry matter in opposite directions, although this pattern did not reach statistical significance in a binomial test. Even after accounting for these 17 loci as covariates, significantly negative polygenic covariance between total carotenoid and dry matter remained. These findings support the hypothesis that widespread mediated pleiotropy rather than genetic linkage drives the negative genetic correlation between total carotenoid and dry matter in cassava and demonstrate a new application of multivariate genome-wide association study for interrogating the genetic architecture of correlated traits.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.