Elizabeth M DiLoreto, Shruti Shastry, Emily J Leptich, Douglas K Reilly, Rachel N Arey, Jagan Srinivasan
{"title":"Harnessing Microbial Tools: Escherichia coli as a Vehicle for Neuropeptide Functional Analysis in Caenorhabditis elegans.","authors":"Elizabeth M DiLoreto, Shruti Shastry, Emily J Leptich, Douglas K Reilly, Rachel N Arey, Jagan Srinivasan","doi":"10.1093/genetics/iyaf155","DOIUrl":null,"url":null,"abstract":"<p><p>Animals respond to changes in their environment and internal states via neuromodulation. Neuropeptides modulate neural circuits with flexibility because one gene can produce either multiple copies of the same neuropeptide or different neuropeptides. However, with this architectural complexity, the function of discrete and active neuropeptides is muddled. Here, we design a genetic tool that facilitates functional analysis of individual peptides. We engineered Escherichia coli bacteria to express active peptides, fed loss-of-function Caenorhabditis elegans, and rescued the activity of genes with varying lengths and functions: pdf-1, flp-3, ins-6, and ins-22. Some peptides were functionally redundant, while others exhibit unique and previously uncharacterized functions. We postulate our rescue-by-feeding approach can elucidate the functional landscape of neuropeptides, identifying the circuits and complex peptidergic pathways that regulate different behavioral and physiological processes.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf155","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Animals respond to changes in their environment and internal states via neuromodulation. Neuropeptides modulate neural circuits with flexibility because one gene can produce either multiple copies of the same neuropeptide or different neuropeptides. However, with this architectural complexity, the function of discrete and active neuropeptides is muddled. Here, we design a genetic tool that facilitates functional analysis of individual peptides. We engineered Escherichia coli bacteria to express active peptides, fed loss-of-function Caenorhabditis elegans, and rescued the activity of genes with varying lengths and functions: pdf-1, flp-3, ins-6, and ins-22. Some peptides were functionally redundant, while others exhibit unique and previously uncharacterized functions. We postulate our rescue-by-feeding approach can elucidate the functional landscape of neuropeptides, identifying the circuits and complex peptidergic pathways that regulate different behavioral and physiological processes.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.