{"title":"Pathogenicity effects of a <i>COL2A1</i> missense mutation (c.1594G>C) in cartilage development.","authors":"Jingqian Zhou, Tianming Yuan","doi":"10.21037/tp-2025-79","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The <i>COL2A1</i> gene encodes the α1 chain of type II collagen, a critical structural component in cartilage and the extracellular matrix. Mutations in this gene are associated with type II collagenopathies, including achondrogenesis type II (ACG2), a severe skeletal dysplasia characterized by perinatal lethality. This study aims to identify and characterize the molecular basis of a <i>COL2A1</i> mutation in a patient presenting with ACG2 features and to elucidate the pathogenic mechanism of the mutation.</p><p><strong>Methods: </strong>A newborn with clinical signs of ACG2 underwent whole-exome sequencing (WES) for genetic analysis. Structural modeling was performed using AlphaFold2 to assess the mutation's impact on the collagen triple-helix. Functional studies were conducted using HEK-293 and C28/I2 cells transfected with wild-type or mutant <i>COL2A1</i> to evaluate collagen synthesis and secretion via immunoblotting and ELISA.</p><p><strong>Results: </strong>WES identified a heterozygous missense mutation in <i>COL2A1</i> gene (NM_001844.5: c.1584G>C, p.Glu532Gln). Structural modeling predicted that the mutation disrupted the stability of the triple-helix. Functional assays demonstrated increased synthesis and impaired secretion of type II collagen in cells expressing the mutant <i>COL2A1</i> gene.</p><p><strong>Conclusions: </strong>The identified <i>COL2A1</i> mutation (p.Glu532Gln) may lead to disrupted collagen structure and secretion, contributing to the pathogenesis of ACG2. These findings advance the understanding of <i>COL2A1</i>-related disorders and highlight the molecular mechanisms underlying type II collagenopathies.</p>","PeriodicalId":23294,"journal":{"name":"Translational pediatrics","volume":"14 7","pages":"1511-1519"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12336877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational pediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tp-2025-79","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The COL2A1 gene encodes the α1 chain of type II collagen, a critical structural component in cartilage and the extracellular matrix. Mutations in this gene are associated with type II collagenopathies, including achondrogenesis type II (ACG2), a severe skeletal dysplasia characterized by perinatal lethality. This study aims to identify and characterize the molecular basis of a COL2A1 mutation in a patient presenting with ACG2 features and to elucidate the pathogenic mechanism of the mutation.
Methods: A newborn with clinical signs of ACG2 underwent whole-exome sequencing (WES) for genetic analysis. Structural modeling was performed using AlphaFold2 to assess the mutation's impact on the collagen triple-helix. Functional studies were conducted using HEK-293 and C28/I2 cells transfected with wild-type or mutant COL2A1 to evaluate collagen synthesis and secretion via immunoblotting and ELISA.
Results: WES identified a heterozygous missense mutation in COL2A1 gene (NM_001844.5: c.1584G>C, p.Glu532Gln). Structural modeling predicted that the mutation disrupted the stability of the triple-helix. Functional assays demonstrated increased synthesis and impaired secretion of type II collagen in cells expressing the mutant COL2A1 gene.
Conclusions: The identified COL2A1 mutation (p.Glu532Gln) may lead to disrupted collagen structure and secretion, contributing to the pathogenesis of ACG2. These findings advance the understanding of COL2A1-related disorders and highlight the molecular mechanisms underlying type II collagenopathies.