Baseline characteristics of participants in the Biomarkers for Evaluating Spine Treatments clinical trial: a sequential multiple assignment randomized trial for chronic low back pain†.

IF 3 3区 医学 Q1 ANESTHESIOLOGY
Pain Medicine Pub Date : 2025-08-05 DOI:10.1093/pm/pnaf073
Bryce Rowland, Kelly S Barth, Kevin M Bell, Amber K Brooks, Andrea L Chadwick, Annika Cleven, Robert W Hurley, Sean Mackey, Kushang V Patel, Sara R Piva, Michael J Schneider, Fatima Al-Kadhi, Bernice Asante-Nketiah, Sarah Bagaason, Anna Batorsky, Jeffrey J Borckardt, Anton E Bowden, Timothy S Carey, Joel Castellanos, Lucy Chen, Brooke Chidgey, Diane Dalton, Jonathan S Dufour, Jaclyn L Eberting, Seth M Eller, Aaron J Fields, Julie M Fritz, Amber Fu, Inam Ghulamhussain, Rachel West Goolsby, Carol M Greco, Sarah Grim, Cameron A Gunn, Lindsay Hanes, Richard E Harris, Steven E Harte, Afton L Hassett, Kinsey Helton, Anna Hoffmeyer, Anastasia Ivanova, Sara Jones Berkeley, Chelsea Kaplan, Kelley M Kidwell, Gregory G Knapik, Michael R Kosorok, Gregorij Kurillo, David Li, Remy Lobo, Joseph Long, Jeffrey C Lotz, Prasath Mageswaran, Sharmila Majumdar, Jianren Mao, William S Marras, Lance M McCracken, Micah McCumber, Samuel A McLean, Miranda McMillan, Wolf Mehling, Rafael Mendoza, Ulrike H Mitchell, Vitaly Napadow, Conor O'Neill, Sydnee Pearson, Scott Peltier, Sean D Rundell, Sonja Ryser, Andrew Schrepf, Emily Schulze, John Sperger, Nam Vo, Mark S Wallace, Abigail M Wampler, Ajay D Wasan, Tristan E Weaver, Kenneth A Weber, Lauren Wilcox, David A Williams, Leslie Wilson, Jacqueline E Woo, Fadel Zeidan, Beibo Zhao, Brianna Zhou, Kevin J Anstrom, Daniel J Clauw, Gwendolyn A Sowa, Matthew C Mauck
{"title":"Baseline characteristics of participants in the Biomarkers for Evaluating Spine Treatments clinical trial: a sequential multiple assignment randomized trial for chronic low back pain†.","authors":"Bryce Rowland, Kelly S Barth, Kevin M Bell, Amber K Brooks, Andrea L Chadwick, Annika Cleven, Robert W Hurley, Sean Mackey, Kushang V Patel, Sara R Piva, Michael J Schneider, Fatima Al-Kadhi, Bernice Asante-Nketiah, Sarah Bagaason, Anna Batorsky, Jeffrey J Borckardt, Anton E Bowden, Timothy S Carey, Joel Castellanos, Lucy Chen, Brooke Chidgey, Diane Dalton, Jonathan S Dufour, Jaclyn L Eberting, Seth M Eller, Aaron J Fields, Julie M Fritz, Amber Fu, Inam Ghulamhussain, Rachel West Goolsby, Carol M Greco, Sarah Grim, Cameron A Gunn, Lindsay Hanes, Richard E Harris, Steven E Harte, Afton L Hassett, Kinsey Helton, Anna Hoffmeyer, Anastasia Ivanova, Sara Jones Berkeley, Chelsea Kaplan, Kelley M Kidwell, Gregory G Knapik, Michael R Kosorok, Gregorij Kurillo, David Li, Remy Lobo, Joseph Long, Jeffrey C Lotz, Prasath Mageswaran, Sharmila Majumdar, Jianren Mao, William S Marras, Lance M McCracken, Micah McCumber, Samuel A McLean, Miranda McMillan, Wolf Mehling, Rafael Mendoza, Ulrike H Mitchell, Vitaly Napadow, Conor O'Neill, Sydnee Pearson, Scott Peltier, Sean D Rundell, Sonja Ryser, Andrew Schrepf, Emily Schulze, John Sperger, Nam Vo, Mark S Wallace, Abigail M Wampler, Ajay D Wasan, Tristan E Weaver, Kenneth A Weber, Lauren Wilcox, David A Williams, Leslie Wilson, Jacqueline E Woo, Fadel Zeidan, Beibo Zhao, Brianna Zhou, Kevin J Anstrom, Daniel J Clauw, Gwendolyn A Sowa, Matthew C Mauck","doi":"10.1093/pm/pnaf073","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Chronic low back pain (cLBP) is a significant public health problem in the United States. A method to identify treatments that are most likely effective for an individual patient based on their unique characteristics is needed.</p><p><strong>Methods: </strong>The Biomarkers for Evaluating Spine Treatments (BEST) Trial is a sequential, multiple assignment, randomized trial designed to estimate an optimal treatment or combination of treatments to reduce pain intensity and interference at 24 weeks in individuals with cLBP.</p><p><strong>Results: </strong>We describe the patient-reported characteristics of the BEST Trial at the Baseline visit. Data collection for extensive required phenotyping is reported. We analyzed the run-in period of the BEST Trial to evaluate predictors of run-in failure. The BEST Trial enrolled 1019 participants and randomized 805 participants (61.6% female, mean age 50.4, 12.5% Black or African American) to the first stage of treatment. We collected extensive required phenotyping on all 805 randomized BEST Trial participants, and additional optional phenotyping on 510 (63.4%) participants.</p><p><strong>Conclusions: </strong>The BEST Trial successfully enrolled a racially and geographically diverse sample of chronic low back pain patients and completed rich phenotypic assessments to inform our primary goal of identifying in whom different treatments show optimal response. We demonstrated the feasibility of collecting extensive phenotypic assessments in a multi-site clinical trial of cLBP.</p><p><strong>Clinical trial registration number: </strong>The Biomarkers for Evaluating Spine Treatments (BEST) Trial is registered on ClinicalTrials.gov. Registration number: NCT05396014 (https://clinicaltrials.gov/study/NCT05396014).</p>","PeriodicalId":19744,"journal":{"name":"Pain Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pain Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pm/pnaf073","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Chronic low back pain (cLBP) is a significant public health problem in the United States. A method to identify treatments that are most likely effective for an individual patient based on their unique characteristics is needed.

Methods: The Biomarkers for Evaluating Spine Treatments (BEST) Trial is a sequential, multiple assignment, randomized trial designed to estimate an optimal treatment or combination of treatments to reduce pain intensity and interference at 24 weeks in individuals with cLBP.

Results: We describe the patient-reported characteristics of the BEST Trial at the Baseline visit. Data collection for extensive required phenotyping is reported. We analyzed the run-in period of the BEST Trial to evaluate predictors of run-in failure. The BEST Trial enrolled 1019 participants and randomized 805 participants (61.6% female, mean age 50.4, 12.5% Black or African American) to the first stage of treatment. We collected extensive required phenotyping on all 805 randomized BEST Trial participants, and additional optional phenotyping on 510 (63.4%) participants.

Conclusions: The BEST Trial successfully enrolled a racially and geographically diverse sample of chronic low back pain patients and completed rich phenotypic assessments to inform our primary goal of identifying in whom different treatments show optimal response. We demonstrated the feasibility of collecting extensive phenotypic assessments in a multi-site clinical trial of cLBP.

Clinical trial registration number: The Biomarkers for Evaluating Spine Treatments (BEST) Trial is registered on ClinicalTrials.gov. Registration number: NCT05396014 (https://clinicaltrials.gov/study/NCT05396014).

评估脊柱治疗的生物标志物临床试验参与者的基线特征:慢性腰痛的顺序多分配随机试验
目的:慢性腰痛(cLBP)是美国一个重要的公共卫生问题。需要一种方法,根据患者的独特特征,确定最可能有效的治疗方法。方法:评估脊柱治疗的生物标志物(BEST)试验是一项连续、多任务、随机试验,旨在评估最佳治疗或治疗组合,以减少cLBP患者24周时的疼痛强度和干扰。结果:我们在基线访问时描述了BEST试验的患者报告特征。报告了广泛所需表型的数据收集。我们分析了BEST试验的磨合期,以评估磨合期失败的预测因素。BEST试验招募了1019名参与者,并将805名参与者(61.6%为女性,平均年龄50.4岁,12.5%为黑人或非裔美国人)随机分配到第一阶段治疗。我们收集了所有805名随机BEST试验参与者的大量必需表型,以及510名(63.4%)参与者的额外可选表型。结论:BEST试验成功招募了不同种族和地域的慢性腰痛患者样本,并完成了丰富的表型评估,以确定不同治疗方法在哪些患者中表现出最佳反应。我们证明了在cLBP的多地点临床试验中收集广泛表型评估的可行性。临床试验注册号:生物标志物评估脊柱治疗(BEST)试验已在ClinicalTrials.gov上注册。注册号:NCT05396014 (https://clinicaltrials.gov/study/NCT05396014)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pain Medicine
Pain Medicine 医学-医学:内科
CiteScore
6.50
自引率
3.20%
发文量
187
审稿时长
3 months
期刊介绍: Pain Medicine is a multi-disciplinary journal dedicated to pain clinicians, educators and researchers with an interest in pain from various medical specialties such as pain medicine, anaesthesiology, family practice, internal medicine, neurology, neurological surgery, orthopaedic spine surgery, psychiatry, and rehabilitation medicine as well as related health disciplines such as psychology, neuroscience, nursing, nurse practitioner, physical therapy, and integrative health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信