Integrating diffusion models and molecular modeling for PARP1 inhibitors generation.

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tan Khanh Nguyen, Thi-Thu Nguyen, Khanh Huyen Thi Pham, Manh-Tu Luong, Ho Trong Tai, Dao Thi Tuyet Mai, Nhat-Hai Nguyen
{"title":"Integrating diffusion models and molecular modeling for PARP1 inhibitors generation.","authors":"Tan Khanh Nguyen, Thi-Thu Nguyen, Khanh Huyen Thi Pham, Manh-Tu Luong, Ho Trong Tai, Dao Thi Tuyet Mai, Nhat-Hai Nguyen","doi":"10.1080/07391102.2025.2544217","DOIUrl":null,"url":null,"abstract":"<p><p>Molecule generation is a critical task in drug discovery, with growing interest in using deep learning to design new compounds. In this study, we propose a novel approach to generate potential PARP1 inhibitors by combining diffusion-based generative models with molecular modeling techniques. Starting from the ZINC20 database, we used diffusion models to create new compounds and applied a predictive model to estimate their PARP1 inhibitory activity. Promising candidates were further evaluated using molecular docking and molecular dynamics simulations to assess their binding affinity. Our results demonstrate the potential of this integrated method to discover novel scaffolds for PARP1 inhibition, supporting future efforts in targeted cancer therapy development.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-15"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2544217","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecule generation is a critical task in drug discovery, with growing interest in using deep learning to design new compounds. In this study, we propose a novel approach to generate potential PARP1 inhibitors by combining diffusion-based generative models with molecular modeling techniques. Starting from the ZINC20 database, we used diffusion models to create new compounds and applied a predictive model to estimate their PARP1 inhibitory activity. Promising candidates were further evaluated using molecular docking and molecular dynamics simulations to assess their binding affinity. Our results demonstrate the potential of this integrated method to discover novel scaffolds for PARP1 inhibition, supporting future efforts in targeted cancer therapy development.

整合扩散模型和分子模型的PARP1抑制剂生成。
分子生成是药物发现中的一项关键任务,人们对使用深度学习设计新化合物的兴趣越来越大。在这项研究中,我们提出了一种新的方法,通过结合基于扩散的生成模型和分子建模技术来生成潜在的PARP1抑制剂。从ZINC20数据库开始,我们使用扩散模型来创建新的化合物,并应用预测模型来估计它们的PARP1抑制活性。利用分子对接和分子动力学模拟来进一步评估有希望的候选分子的结合亲和力。我们的研究结果表明,这种综合方法有潜力发现新的PARP1抑制支架,支持未来靶向癌症治疗的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信