{"title":"ESCO2 drives breast cancer proliferation and metastasis through PI3K/AKT/mTOR phosphorylation: A potential therapeutic target","authors":"Pingchuan Li , Lineng Wei , Meng Li , Huawei Yang","doi":"10.1016/j.bbamcr.2025.120043","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer remains a major global health threat to women, underscoring the urgent need for novel therapeutic targets. While ESCO2, an essential cell cycle regulator, has been implicated in cancer progression, its precise role and molecular mechanisms in breast cancer remain poorly understood. In this study, we first demonstrated significant upregulation of ESCO2 in breast cancer through analysis of TCGA and GEO datasets, which was further validated in clinical specimens and cell lines, with its expression correlating with advanced T-stage, aggressive molecular subtypes and poor prognosis. Functional studies in MDA-MB-231 and MDA-MB-468 cells revealed that ESCO2 overexpression promoted cell proliferation, migration and invasion, while its knockdown exerted opposite effects. Mechanistic investigations uncovered that ESCO2 depletion reduced phosphorylation of PI3K/AKT/mTOR pathway components, and co-immunoprecipitation assays confirmed direct interaction between ESCO2 and PI3K. Importantly, the tumor-suppressive effects of ESCO2 knockdown could be rescued by SC79-mediated AKT activation. In vivo experiments using xenograft mouse models consistently showed that ESCO2 silencing significantly inhibited tumor growth, increased apoptosis and necrosis, and reduced metastasis. Collectively, our findings establish ESCO2 as a novel oncogene driving breast cancer progression through PI3K/AKT/mTOR pathway activation, highlighting its potential as a promising therapeutic target for breast cancer intervention.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 8","pages":"Article 120043"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016748892500148X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer remains a major global health threat to women, underscoring the urgent need for novel therapeutic targets. While ESCO2, an essential cell cycle regulator, has been implicated in cancer progression, its precise role and molecular mechanisms in breast cancer remain poorly understood. In this study, we first demonstrated significant upregulation of ESCO2 in breast cancer through analysis of TCGA and GEO datasets, which was further validated in clinical specimens and cell lines, with its expression correlating with advanced T-stage, aggressive molecular subtypes and poor prognosis. Functional studies in MDA-MB-231 and MDA-MB-468 cells revealed that ESCO2 overexpression promoted cell proliferation, migration and invasion, while its knockdown exerted opposite effects. Mechanistic investigations uncovered that ESCO2 depletion reduced phosphorylation of PI3K/AKT/mTOR pathway components, and co-immunoprecipitation assays confirmed direct interaction between ESCO2 and PI3K. Importantly, the tumor-suppressive effects of ESCO2 knockdown could be rescued by SC79-mediated AKT activation. In vivo experiments using xenograft mouse models consistently showed that ESCO2 silencing significantly inhibited tumor growth, increased apoptosis and necrosis, and reduced metastasis. Collectively, our findings establish ESCO2 as a novel oncogene driving breast cancer progression through PI3K/AKT/mTOR pathway activation, highlighting its potential as a promising therapeutic target for breast cancer intervention.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.