Control of Overly Secreted Tryptophanyl tRNA Synthetase Attenuates Sepsis Severity in a Porcine Model.

IF 3.2 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Biomolecules & Therapeutics Pub Date : 2025-09-01 Epub Date: 2025-08-13 DOI:10.4062/biomolther.2025.071
Yoon Tae Kim, Geunyeol Jeong, Yihyo Kim, HyeonJu Roh, Susung Lim, Jinah Jang, Yun Hui Choi, Kyoung Chul Park, Mirim Jin
{"title":"Control of Overly Secreted Tryptophanyl tRNA Synthetase Attenuates Sepsis Severity in a Porcine Model.","authors":"Yoon Tae Kim, Geunyeol Jeong, Yihyo Kim, HyeonJu Roh, Susung Lim, Jinah Jang, Yun Hui Choi, Kyoung Chul Park, Mirim Jin","doi":"10.4062/biomolther.2025.071","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a leading cause of mortality in hospitals with a lack of reliable biomarkers and specialized therapeutics. Recently, highly secreted tryptophanyl-tRNA synthetase 1 (WARS1), an endogenous ligand for Toll-like receptor (TLR) 2 and TLR4, was found to be a potential theranostic target for hypercytokinemic severe sepsis. In this study, using the minipig sepsis model inoculated with cecum slurry, we demonstrated that increases in WARS1 levels were associated with severity of sepsis and showed strong correlations with RBC count and the levels of HGB, HCT, EPO, lactate, and PLT count in the acute phase of sepsis. Further, administration of the WARS1 neutralizing antibody to the septic minipigs inhibited the increase in the overall SOFA score with a significantly lower P/F ratio, which was accompanied by the suppression of proinflammatory cytokine and chemokine expressions as well as EPO production, a decrease in AST and ALT levels, and inflammatory immune cell infiltration in the lung. Taken together, these findings provide a novel insight into the pathophysiology of acute phase of sepsis and suggest the clinical application of WARS1 neutralizing therapeutics in the treatment of sepsis.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"852-865"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2025.071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis is a leading cause of mortality in hospitals with a lack of reliable biomarkers and specialized therapeutics. Recently, highly secreted tryptophanyl-tRNA synthetase 1 (WARS1), an endogenous ligand for Toll-like receptor (TLR) 2 and TLR4, was found to be a potential theranostic target for hypercytokinemic severe sepsis. In this study, using the minipig sepsis model inoculated with cecum slurry, we demonstrated that increases in WARS1 levels were associated with severity of sepsis and showed strong correlations with RBC count and the levels of HGB, HCT, EPO, lactate, and PLT count in the acute phase of sepsis. Further, administration of the WARS1 neutralizing antibody to the septic minipigs inhibited the increase in the overall SOFA score with a significantly lower P/F ratio, which was accompanied by the suppression of proinflammatory cytokine and chemokine expressions as well as EPO production, a decrease in AST and ALT levels, and inflammatory immune cell infiltration in the lung. Taken together, these findings provide a novel insight into the pathophysiology of acute phase of sepsis and suggest the clinical application of WARS1 neutralizing therapeutics in the treatment of sepsis.

控制过度分泌色氨酸tRNA合成酶可减轻猪模型脓毒症的严重程度。
脓毒症是缺乏可靠的生物标志物和专门治疗的医院死亡的主要原因。最近,高分泌色氨酸- trna合成酶1 (WARS1)是toll样受体(TLR) 2和TLR4的内源性配体,被发现是高细胞运动严重脓毒症的潜在治疗靶点。在本研究中,我们使用接种盲肠浆液的小型猪脓毒症模型,证明WARS1水平的升高与脓毒症的严重程度相关,并且在脓毒症急性期与RBC计数、HGB、HCT、EPO、乳酸水平和PLT计数有很强的相关性。此外,对败血症小型猪给予WARS1中和抗体可抑制总SOFA评分的升高,P/F比显著降低,同时伴有促炎细胞因子和趋化因子表达及EPO生成的抑制,AST和ALT水平降低,肺部炎症免疫细胞浸润。综上所述,这些发现为脓毒症急性期的病理生理学提供了新的见解,并提示war1中和疗法在脓毒症治疗中的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信