The synergistic interplay between vitamin A, dietary fiber, and the microbiota-gut-brain axis: a potential mechanism for preventing Alzheimer's disease.
Shadt Skawratananond, Grace E McCrea, Paul Lie, Matthew B Buxton, Sean P Daly, Nicholas A Vojtkofsky, Shane C Smith, Charlie Zhang, Matthew Hernandez, Ashly Hindle, Aric F Logsdon, J Josh Lawrence
{"title":"The synergistic interplay between vitamin A, dietary fiber, and the microbiota-gut-brain axis: a potential mechanism for preventing Alzheimer's disease.","authors":"Shadt Skawratananond, Grace E McCrea, Paul Lie, Matthew B Buxton, Sean P Daly, Nicholas A Vojtkofsky, Shane C Smith, Charlie Zhang, Matthew Hernandez, Ashly Hindle, Aric F Logsdon, J Josh Lawrence","doi":"10.1152/ajpgi.00097.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The human gastrointestinal tract harbors a vast and diverse microbial community, with the gut microbiome playing a fundamental role in numerous biological processes that influence overall health and disease progression. Emerging evidence has identified bacterial lipopolysaccharides in the hippocampus of patients with Alzheimer's disease (AD), highlighting the intricate relationship between the gastrointestinal tract, gut microbiome, and the central and enteric nervous systems-commonly referred to as the \"microbiota-gut-brain axis.\" In this review, we explore the mechanisms by which the microbiota-gut-brain axis contributes to AD pathogenesis. We propose that sufficient levels of all-trans retinoic acid (ATRA), the bioactive form of vitamin A, enhance intestinal barrier integrity by upregulating tight junction proteins and modulating immune function through the induction of regulatory T-cell differentiation, thereby mitigating inflammation. Furthermore, dietary fiber complements this process by promoting the production of short-chain fatty acids, such as butyrate, via bacterial fermentation. Butyrate, in turn, acts as a histone deacetylase inhibitor, upregulating ATRA bioavailability by elevating aldehyde dehydrogenase gene expression. Our mechanistic framework is supported by the endotoxin hypothesis of AD, which maintains that the movement of infectious pathogens across the blood-brain barrier causes a vicious cycle of inflammation, a key factor of AD pathogenesis, leading to amyloid-β deposition, microglial activation, and CYP26A1-mediated ATRA degradation. Finally, we discuss microbiome-based therapeutic strategies and dietary interventions, including prebiotic compounds, probiotic bacteria, fecal microbiota transplantation, the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, and a combined approach featuring vitamins A/D and dietary fiber, as potential approaches to prevent progression to AD via the microbiota-gut-brain axis.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G484-G499"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00097.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human gastrointestinal tract harbors a vast and diverse microbial community, with the gut microbiome playing a fundamental role in numerous biological processes that influence overall health and disease progression. Emerging evidence has identified bacterial lipopolysaccharides in the hippocampus of patients with Alzheimer's disease (AD), highlighting the intricate relationship between the gastrointestinal tract, gut microbiome, and the central and enteric nervous systems-commonly referred to as the "microbiota-gut-brain axis." In this review, we explore the mechanisms by which the microbiota-gut-brain axis contributes to AD pathogenesis. We propose that sufficient levels of all-trans retinoic acid (ATRA), the bioactive form of vitamin A, enhance intestinal barrier integrity by upregulating tight junction proteins and modulating immune function through the induction of regulatory T-cell differentiation, thereby mitigating inflammation. Furthermore, dietary fiber complements this process by promoting the production of short-chain fatty acids, such as butyrate, via bacterial fermentation. Butyrate, in turn, acts as a histone deacetylase inhibitor, upregulating ATRA bioavailability by elevating aldehyde dehydrogenase gene expression. Our mechanistic framework is supported by the endotoxin hypothesis of AD, which maintains that the movement of infectious pathogens across the blood-brain barrier causes a vicious cycle of inflammation, a key factor of AD pathogenesis, leading to amyloid-β deposition, microglial activation, and CYP26A1-mediated ATRA degradation. Finally, we discuss microbiome-based therapeutic strategies and dietary interventions, including prebiotic compounds, probiotic bacteria, fecal microbiota transplantation, the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, and a combined approach featuring vitamins A/D and dietary fiber, as potential approaches to prevent progression to AD via the microbiota-gut-brain axis.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.