Thermodynamic descriptor-guided ligand screening enables dendrite-free zinc deposition in alkaline flow batteries.

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-12-15 Epub Date: 2025-08-05 DOI:10.1016/j.jcis.2025.138637
Xusheng Cheng, Tao Xuan, Haoran Hu, Jianchi Wang, Jiantao Zai, Liwei Wang
{"title":"Thermodynamic descriptor-guided ligand screening enables dendrite-free zinc deposition in alkaline flow batteries.","authors":"Xusheng Cheng, Tao Xuan, Haoran Hu, Jianchi Wang, Jiantao Zai, Liwei Wang","doi":"10.1016/j.jcis.2025.138637","DOIUrl":null,"url":null,"abstract":"<p><p>Alkaline zinc-based flow batteries suffer from poor zinc reversibility due to dendrite growth and parasitic reactions, which significantly shorten their cycling lifespan. A key challenge lies in the rational design of ligands to eliminate concentration polarization caused by mismatched diffusion and interfacial reaction rates, thereby inducing and regulating uniform zinc deposition. In this study, we propose a thermodynamic descriptor-guided ligand screening strategy, using the metal-ligand stability constant (log K) as a quantitative criterion to simultaneously optimize deposition morphology and interfacial ion kinetics. Guided by this principle, nitrilotriacetic acid (NTA, log K = 11.98) is identified as a robust chelating agent under strongly alkaline conditions (pH > 14). Its moderate coordination strength enables the disruption of the native Zn<sup>2+</sup>-H<sub>2</sub>O network, effectively suppressing hydrogen evolution while maintaining near-theoretical Zn<sup>2+</sup> desolvation kinetics. In situ microscopy and electrochemical analyses reveal that NTA directs preferential Zn(002) growth, yielding dendrite-free deposition at ultrahigh current densities (80 mA cm<sup>-2</sup>) and high areal capacities (40 mAh cm<sup>-2</sup>). Furthermore, NTA facilitates efficient Zn<sup>2+</sup> diffusion (5.77 × 10<sup>-7</sup> cm<sup>2</sup>/s), outperforming strong chelators such as ethylenediaminetetraacetic acid. As a result, Zn//Zn symmetric cells exhibit stable cycling over 400 h, while NTA-enabled ZnFe flow batteries achieve 700 cycles with 99 % coulombic efficiency and minimal capacity decay. This work establishes log K as a practical screening descriptor for multi-objective electrolyte optimization and provides a scalable pathway for the development of high-performance alkaline zinc flow batteries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 Pt 3","pages":"138637"},"PeriodicalIF":9.7000,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138637","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline zinc-based flow batteries suffer from poor zinc reversibility due to dendrite growth and parasitic reactions, which significantly shorten their cycling lifespan. A key challenge lies in the rational design of ligands to eliminate concentration polarization caused by mismatched diffusion and interfacial reaction rates, thereby inducing and regulating uniform zinc deposition. In this study, we propose a thermodynamic descriptor-guided ligand screening strategy, using the metal-ligand stability constant (log K) as a quantitative criterion to simultaneously optimize deposition morphology and interfacial ion kinetics. Guided by this principle, nitrilotriacetic acid (NTA, log K = 11.98) is identified as a robust chelating agent under strongly alkaline conditions (pH > 14). Its moderate coordination strength enables the disruption of the native Zn2+-H2O network, effectively suppressing hydrogen evolution while maintaining near-theoretical Zn2+ desolvation kinetics. In situ microscopy and electrochemical analyses reveal that NTA directs preferential Zn(002) growth, yielding dendrite-free deposition at ultrahigh current densities (80 mA cm-2) and high areal capacities (40 mAh cm-2). Furthermore, NTA facilitates efficient Zn2+ diffusion (5.77 × 10-7 cm2/s), outperforming strong chelators such as ethylenediaminetetraacetic acid. As a result, Zn//Zn symmetric cells exhibit stable cycling over 400 h, while NTA-enabled ZnFe flow batteries achieve 700 cycles with 99 % coulombic efficiency and minimal capacity decay. This work establishes log K as a practical screening descriptor for multi-objective electrolyte optimization and provides a scalable pathway for the development of high-performance alkaline zinc flow batteries.

热力学描述符引导配体筛选使碱性液流电池中的无枝晶锌沉积成为可能。
碱性锌基液流电池由于枝晶生长和寄生反应导致锌可逆性差,这大大缩短了电池的循环寿命。一个关键的挑战在于合理设计配体,消除扩散和界面反应速率不匹配导致的浓度极化,从而诱导和调节均匀的锌沉积。在这项研究中,我们提出了一种热力学描述符引导的配体筛选策略,使用金属配体稳定常数(log K)作为定量标准,同时优化沉积形态和界面离子动力学。在这一原理的指导下,硝基三乙酸(NTA, log K = 11.98)在强碱性条件下(pH值bbbb14)被确定为一种强效螯合剂。其适度的配位强度可以破坏原生的Zn2+-H2O网络,有效地抑制氢的析出,同时保持接近理论的Zn2+脱溶动力学。原位显微镜和电化学分析表明,NTA有利于Zn(002)生长,在超高电流密度(80 mA cm-2)和高面积容量(40 mAh cm-2)下产生无枝晶沉积。此外,NTA促进了Zn2+的高效扩散(5.77 × 10-7 cm2/s),优于强螯合剂,如乙二胺四乙酸。因此,锌/锌对称电池在400小时内表现出稳定的循环,而nta支持的ZnFe液流电池在700次循环中具有99%的库仑效率和最小的容量衰减。这项工作建立了log K作为多目标电解质优化的实用筛选描述符,并为高性能碱性锌液流电池的开发提供了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信