Online Monitoring Scheme Using GLPP Through Kantorovich Distance Combined With a Sliding Window Technique for Nonlinear Dynamic Process Fault Detection

IF 2.1 4区 化学 Q1 SOCIAL WORK
Cheng Zhang, Lu Ren, Jing Zhang, Yuan Li
{"title":"Online Monitoring Scheme Using GLPP Through Kantorovich Distance Combined With a Sliding Window Technique for Nonlinear Dynamic Process Fault Detection","authors":"Cheng Zhang,&nbsp;Lu Ren,&nbsp;Jing Zhang,&nbsp;Yuan Li","doi":"10.1002/cem.70058","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To address the issue of insufficient fault detection performance of global–local preserving projections (GLPP) in the detection of minor faults within nonlinear dynamic processes, a novel fault detection method based on GLPP and Kantorovich distance combined with a sliding window (GLPP-KD) is proposed. Firstly, the GLPP algorithm is used to construct a weight matrix to retain the key information of the data, and the objective function containing local and global information is transformed into a generalized eigenvector problem to obtain a projection matrix. Additionally, the sliding window technique integrated with the Kantorovich distance is employed to quantify the discrepancies between probability distributions, thereby capturing the local dynamic characteristics of the data. Eventually, the fault detection task is achieved by identifying the minor distinctions between normal and faulty states. Experimental results show that compared with traditional methods, GLPP-KD improves the fault detection accuracy and effectively reduces the false alarm rate. The proposed method provides a strong guarantee for the safe and stable operation of the industry and has high application value.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cem.70058","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issue of insufficient fault detection performance of global–local preserving projections (GLPP) in the detection of minor faults within nonlinear dynamic processes, a novel fault detection method based on GLPP and Kantorovich distance combined with a sliding window (GLPP-KD) is proposed. Firstly, the GLPP algorithm is used to construct a weight matrix to retain the key information of the data, and the objective function containing local and global information is transformed into a generalized eigenvector problem to obtain a projection matrix. Additionally, the sliding window technique integrated with the Kantorovich distance is employed to quantify the discrepancies between probability distributions, thereby capturing the local dynamic characteristics of the data. Eventually, the fault detection task is achieved by identifying the minor distinctions between normal and faulty states. Experimental results show that compared with traditional methods, GLPP-KD improves the fault detection accuracy and effectively reduces the false alarm rate. The proposed method provides a strong guarantee for the safe and stable operation of the industry and has high application value.

Abstract Image

Abstract Image

Abstract Image

基于Kantorovich距离和滑动窗口技术的GLPP在线监测方案用于非线性动态过程故障检测
为了解决全局局部保持投影(GLPP)在非线性动态过程中检测小故障时故障检测性能不足的问题,提出了一种基于全局局部保持投影和Kantorovich距离结合滑动窗口的故障检测方法(GLPP- kd)。首先,利用GLPP算法构造权重矩阵以保留数据的关键信息,并将包含局部和全局信息的目标函数转化为广义特征向量问题,得到投影矩阵;此外,采用结合Kantorovich距离的滑动窗口技术来量化概率分布之间的差异,从而捕捉数据的局部动态特征。最终,通过识别正常状态和故障状态之间的细微差别来完成故障检测任务。实验结果表明,与传统方法相比,GLPP-KD提高了故障检测精度,有效降低了误报率。该方法为工业安全稳定运行提供了有力保障,具有较高的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信