{"title":"A Hybrid Neural Network for the Traffic Flow Prediction on the Premise of Missing Data","authors":"Junxi Chen, Zhenlin Wei, Jiaxin Zhang","doi":"10.1049/itr2.70070","DOIUrl":null,"url":null,"abstract":"<p>On the basis of a generative adversarial network (GAN) and a convolutional neural network (CNN), this work proposes an ER-GAN-CNN to forecast the traffic flow in the presence of missing data by improving GAN. Due to the occurrence of emergencies and the fault of the relevant equipment, the equipment for passenger flow detection may lose some data, which would have negative impacts on passenger flow prediction. In order to cope with such situations, GAN is introduced to make up for the missing data in this paper. On the basis of complete data and CNN, inception blocks are built thereafter to further predict the passenger flow/traffic flow. The accuracy of the prediction of passenger flow is significantly improved with the help of the ER-GAN-CNN, which is able to provide more accurate and rapid traffic guidance for the drivers.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70070","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70070","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
On the basis of a generative adversarial network (GAN) and a convolutional neural network (CNN), this work proposes an ER-GAN-CNN to forecast the traffic flow in the presence of missing data by improving GAN. Due to the occurrence of emergencies and the fault of the relevant equipment, the equipment for passenger flow detection may lose some data, which would have negative impacts on passenger flow prediction. In order to cope with such situations, GAN is introduced to make up for the missing data in this paper. On the basis of complete data and CNN, inception blocks are built thereafter to further predict the passenger flow/traffic flow. The accuracy of the prediction of passenger flow is significantly improved with the help of the ER-GAN-CNN, which is able to provide more accurate and rapid traffic guidance for the drivers.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf