{"title":"LR-COBRAS: A logic reasoning-driven interactive medical image data annotation algorithm","authors":"Ning Zhou, Jiawei Cao","doi":"10.1016/j.compmedimag.2025.102623","DOIUrl":null,"url":null,"abstract":"<div><div>The volume of image data generated in the medical field is continuously increasing. Manual annotation is both costly and prone to human error. Additionally, deep learning-based medical image algorithms rely on large, accurately annotated training datasets, which are expensive to produce and often result in instability. This study introduces LR-COBRAS, an interactive computer-aided data annotation algorithm designed for medical experts. LR-COBRAS aims to assist healthcare professionals in achieving more precise annotation outcomes through interactive processes, thereby optimizing medical image annotation tasks. The algorithm enhances must-link and cannot-link constraints during interactions through a logic reasoning module. It automatically generates potential constraint relationships, reducing the frequency of user interactions and improving clustering accuracy. By utilizing rules such as symmetry, transitivity, and consistency, LR-COBRAS effectively balances automation with clinical relevance. Experimental results based on the MedMNIST+ dataset and ChestX-ray8 dataset demonstrate that LR-COBRAS significantly outperforms existing methods in clustering accuracy, efficiency, and interactive burden, showcasing superior robustness and applicability. This algorithm provides a novel solution for intelligent medical image analysis. The source code for our implementation is available on <span><span>https://github.com/cjw-bbxc/MILR-COBRAS</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"Article 102623"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125001326","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The volume of image data generated in the medical field is continuously increasing. Manual annotation is both costly and prone to human error. Additionally, deep learning-based medical image algorithms rely on large, accurately annotated training datasets, which are expensive to produce and often result in instability. This study introduces LR-COBRAS, an interactive computer-aided data annotation algorithm designed for medical experts. LR-COBRAS aims to assist healthcare professionals in achieving more precise annotation outcomes through interactive processes, thereby optimizing medical image annotation tasks. The algorithm enhances must-link and cannot-link constraints during interactions through a logic reasoning module. It automatically generates potential constraint relationships, reducing the frequency of user interactions and improving clustering accuracy. By utilizing rules such as symmetry, transitivity, and consistency, LR-COBRAS effectively balances automation with clinical relevance. Experimental results based on the MedMNIST+ dataset and ChestX-ray8 dataset demonstrate that LR-COBRAS significantly outperforms existing methods in clustering accuracy, efficiency, and interactive burden, showcasing superior robustness and applicability. This algorithm provides a novel solution for intelligent medical image analysis. The source code for our implementation is available on https://github.com/cjw-bbxc/MILR-COBRAS.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.