Prediction of hematoma changes in spontaneous intracerebral hemorrhage using a Transformer-based generative adversarial network to generate follow-up CT images
Changfeng Feng , Caiwen Jiang , Chenxi Hu , Shuaihang Kong , Ziyi Ye , Jing Han , Kai Zhong , Tingting Yang , Hongmei Yin , Qun Lao , Zhongxiang Ding , Dinggang Shen , Qijun Shen
{"title":"Prediction of hematoma changes in spontaneous intracerebral hemorrhage using a Transformer-based generative adversarial network to generate follow-up CT images","authors":"Changfeng Feng , Caiwen Jiang , Chenxi Hu , Shuaihang Kong , Ziyi Ye , Jing Han , Kai Zhong , Tingting Yang , Hongmei Yin , Qun Lao , Zhongxiang Ding , Dinggang Shen , Qijun Shen","doi":"10.1016/j.compmedimag.2025.102614","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To visualize and assess hematoma growth trends by generating follow-up CT images within 24 h based on baseline CT images of spontaneous intracerebral hemorrhage (sICH) using Transformer-integrated Generative Adversarial Networks (GAN).</div></div><div><h3>Methods</h3><div>Patients with sICH were retrospectively recruited from two medical centers. The imaging data included baseline non-contrast CT scans taken after onset and follow-up imaging within 24 h. In the test set, the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) were utilized to quantitatively assess the quality of the predicted images. Pearson’s correlation analysis was performed to assess the agreement of semantic features and geometric properties of hematomas between true follow-up CT images and the predicted images. The consistency of hematoma expansion prediction between true and generated images was further examined.</div></div><div><h3>Results</h3><div>The PSNR of the predicted images was 26.73 ± 1.11, and the SSIM was 91.23 ± 1.10. The Pearson correlation coefficients (r) with 95 % confidence intervals (CI) for irregularity, satellite sign number, intraventricular or subarachnoid hemorrhage, midline shift, edema expansion, mean CT value, maximum cross-sectional area, and hematoma volume between the predicted and true follow-up images were as follows: 0.94 (0.91, 0.96), 0.87 (0.81, 0.91), 0.86 (0.80, 0.91), 0.89 (0.84, 0.92), 0.91 (0.87, 0.94), 0.78(0.68, 0.84), 0.94(0.91, 0.96), and 0.94 (0.91, 0.96), respectively. The correlation coefficient (r) for predicting hematoma expansion between predicted and true follow-up images was 0.86 (95 % CI: 0.79, 0.90; <em>P</em> < 0.001).</div></div><div><h3>Conclusions</h3><div>The model constructed using a GAN integrated with Transformer modules can accurately visualize early hematoma changes in sICH.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"Article 102614"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125001235","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To visualize and assess hematoma growth trends by generating follow-up CT images within 24 h based on baseline CT images of spontaneous intracerebral hemorrhage (sICH) using Transformer-integrated Generative Adversarial Networks (GAN).
Methods
Patients with sICH were retrospectively recruited from two medical centers. The imaging data included baseline non-contrast CT scans taken after onset and follow-up imaging within 24 h. In the test set, the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) were utilized to quantitatively assess the quality of the predicted images. Pearson’s correlation analysis was performed to assess the agreement of semantic features and geometric properties of hematomas between true follow-up CT images and the predicted images. The consistency of hematoma expansion prediction between true and generated images was further examined.
Results
The PSNR of the predicted images was 26.73 ± 1.11, and the SSIM was 91.23 ± 1.10. The Pearson correlation coefficients (r) with 95 % confidence intervals (CI) for irregularity, satellite sign number, intraventricular or subarachnoid hemorrhage, midline shift, edema expansion, mean CT value, maximum cross-sectional area, and hematoma volume between the predicted and true follow-up images were as follows: 0.94 (0.91, 0.96), 0.87 (0.81, 0.91), 0.86 (0.80, 0.91), 0.89 (0.84, 0.92), 0.91 (0.87, 0.94), 0.78(0.68, 0.84), 0.94(0.91, 0.96), and 0.94 (0.91, 0.96), respectively. The correlation coefficient (r) for predicting hematoma expansion between predicted and true follow-up images was 0.86 (95 % CI: 0.79, 0.90; P < 0.001).
Conclusions
The model constructed using a GAN integrated with Transformer modules can accurately visualize early hematoma changes in sICH.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.