{"title":"High-resolution thermal simulation framework for extrusion-based additive manufacturing of complex geometries","authors":"Dhruv Gamdha, Kumar Saurabh, Baskar Ganapathysubramanian, Adarsh Krishnamurthy","doi":"10.1016/j.finel.2025.104410","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate simulation of the printing process is essential for improving print quality, reducing waste, and optimizing the printing parameters of extrusion-based additive manufacturing. Traditional additive manufacturing simulations are very compute-intensive and are not scalable to simulate even moderately sized geometries. In this paper, we propose a general framework for creating a digital twin of the dynamic printing process by performing physics simulations with the intermediate print geometries. Our framework takes a general extrusion-based additive manufacturing G-code, generates an analysis-suitable voxelized geometry representation from the print schedule, and performs physics-based (transient thermal) simulations of the printing process. Our approach leverages adaptive octree meshes for both geometry representation as well as for fast simulations to address real-time predictions. We demonstrate the effectiveness of our method by simulating the printing of complex geometries at high voxel resolutions with both sparse and dense infills. Our results show that this approach scales to high voxel resolutions and can predict the transient heat distribution as the print progresses. Because the simulation runs faster than real print time, the same engine could, in principle, feed thermal predictions back to the machine controller (e.g., to adjust fan speed or extrusion rate). The present study establishes the computational foundations for a real-time <em>digital twin</em>, which can be used for closed control loop control in the future.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104410"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X2500099X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate simulation of the printing process is essential for improving print quality, reducing waste, and optimizing the printing parameters of extrusion-based additive manufacturing. Traditional additive manufacturing simulations are very compute-intensive and are not scalable to simulate even moderately sized geometries. In this paper, we propose a general framework for creating a digital twin of the dynamic printing process by performing physics simulations with the intermediate print geometries. Our framework takes a general extrusion-based additive manufacturing G-code, generates an analysis-suitable voxelized geometry representation from the print schedule, and performs physics-based (transient thermal) simulations of the printing process. Our approach leverages adaptive octree meshes for both geometry representation as well as for fast simulations to address real-time predictions. We demonstrate the effectiveness of our method by simulating the printing of complex geometries at high voxel resolutions with both sparse and dense infills. Our results show that this approach scales to high voxel resolutions and can predict the transient heat distribution as the print progresses. Because the simulation runs faster than real print time, the same engine could, in principle, feed thermal predictions back to the machine controller (e.g., to adjust fan speed or extrusion rate). The present study establishes the computational foundations for a real-time digital twin, which can be used for closed control loop control in the future.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.