Xin Ye , Shanzhi Liu , Weibin Wen , Pan Wang , Jun Liang
{"title":"A novel quasi-smooth manifold element method for structural transient heat conduction analysis with radiation and nonlinear boundaries","authors":"Xin Ye , Shanzhi Liu , Weibin Wen , Pan Wang , Jun Liang","doi":"10.1016/j.finel.2025.104428","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel quasi-smooth manifold element (QSME) method to solve structural heat conduction problem. Compared with the conventional finite element (FE) method, the main advantage of the QSME method is the use of high-order local approximation. This ensures the continuity of first-order derivatives at element nodes, enhancing computation accuracy. The results show that the QSME method has high computation accuracy and efficiency. It can effectively solve the nonlinear thermal radiation problem of complex geometries. Under the same degrees of freedom (DOFs), the QSME method achieves at least one-order magnitude higher accuracy than the conventional FE method. Moreover, compared with the FE method, it attains faster convergence rate and requires far less DOFs to achieve the roughly same solution accuracy. This method provides an efficient computational tool for heat conduction analysis and coupled multi-physics simulations.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104428"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001179","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel quasi-smooth manifold element (QSME) method to solve structural heat conduction problem. Compared with the conventional finite element (FE) method, the main advantage of the QSME method is the use of high-order local approximation. This ensures the continuity of first-order derivatives at element nodes, enhancing computation accuracy. The results show that the QSME method has high computation accuracy and efficiency. It can effectively solve the nonlinear thermal radiation problem of complex geometries. Under the same degrees of freedom (DOFs), the QSME method achieves at least one-order magnitude higher accuracy than the conventional FE method. Moreover, compared with the FE method, it attains faster convergence rate and requires far less DOFs to achieve the roughly same solution accuracy. This method provides an efficient computational tool for heat conduction analysis and coupled multi-physics simulations.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.