{"title":"Advances in Protein-RNA aptamer recognition and modeling: Current trends and future perspectives","authors":"Liming Qiu , Xiaoqin Zou","doi":"10.1016/j.sbi.2025.103133","DOIUrl":null,"url":null,"abstract":"<div><div>RNA aptamers possess a remarkable ability to selectively target a diverse spectrum of biomolecules with exceptional affinity and specificity. Their distinctive physical and chemical attributes have driven extensive research into their therapeutic, diagnostic, and analytical applications. However, experimental approaches alone are insufficient to meet the growing demand. As a result, accurate and efficient computational methods are playing an increasingly vital role in RNA aptamer sequence design and structural modeling. Recent breakthroughs in biomolecular structure prediction, particularly through deep learning, have further spurred the development of innovative algorithms. In this review, we summarize current computational models for RNA aptamer structure prediction and design, highlighting recent advances in the field.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103133"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001514","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA aptamers possess a remarkable ability to selectively target a diverse spectrum of biomolecules with exceptional affinity and specificity. Their distinctive physical and chemical attributes have driven extensive research into their therapeutic, diagnostic, and analytical applications. However, experimental approaches alone are insufficient to meet the growing demand. As a result, accurate and efficient computational methods are playing an increasingly vital role in RNA aptamer sequence design and structural modeling. Recent breakthroughs in biomolecular structure prediction, particularly through deep learning, have further spurred the development of innovative algorithms. In this review, we summarize current computational models for RNA aptamer structure prediction and design, highlighting recent advances in the field.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation