Topological classification of insulators: I. Non-interacting spectrally-gapped one-dimensional systems

IF 1.5 1区 数学 Q1 MATHEMATICS
Jui-Hui Chung , Jacob Shapiro
{"title":"Topological classification of insulators: I. Non-interacting spectrally-gapped one-dimensional systems","authors":"Jui-Hui Chung ,&nbsp;Jacob Shapiro","doi":"10.1016/j.aim.2025.110486","DOIUrl":null,"url":null,"abstract":"<div><div>We study non-interacting electrons in disordered one-dimensional materials that exhibit a spectral gap, in each of the ten Altland-Zirnbauer symmetry classes. We define an appropriate topology on the space of Hamiltonians, such that the so-called strong topological invariants become complete invariants, yielding the one-dimensional column of the Kitaev periodic table, but now derived <em>without</em> recourse to K-theory. We thus confirm the conjecture regarding a one-to-one correspondence between topological phases of gapped non-interacting 1D systems and the respective Abelian groups <span><math><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>,</mo><mi>Z</mi><mo>,</mo><mn>2</mn><mi>Z</mi><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the spectral-gap regime. The main tool we develop is an equivariant theory of homotopies of <em>local</em> unitaries and orthogonal projections. Moreover, we discuss an extension of the unitary theory to partial isometries, to provide a perspective toward the understanding of strongly-disordered, mobility-gapped materials.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110486"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003846","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study non-interacting electrons in disordered one-dimensional materials that exhibit a spectral gap, in each of the ten Altland-Zirnbauer symmetry classes. We define an appropriate topology on the space of Hamiltonians, such that the so-called strong topological invariants become complete invariants, yielding the one-dimensional column of the Kitaev periodic table, but now derived without recourse to K-theory. We thus confirm the conjecture regarding a one-to-one correspondence between topological phases of gapped non-interacting 1D systems and the respective Abelian groups {0},Z,2Z,Z2 in the spectral-gap regime. The main tool we develop is an equivariant theory of homotopies of local unitaries and orthogonal projections. Moreover, we discuss an extension of the unitary theory to partial isometries, to provide a perspective toward the understanding of strongly-disordered, mobility-gapped materials.
绝缘体的拓扑分类:1 .非相互作用谱隙一维系统
我们研究了无序一维材料中表现出光谱间隙的非相互作用电子,在十个Altland-Zirnbauer对称类中。我们在哈密顿空间上定义了一个合适的拓扑,使得所谓的强拓扑不变量变成完全不变量,从而得到基塔耶夫元素周期表的一维列,但现在不用k理论推导。因此,我们证实了关于有隙非相互作用一维系统的拓扑相与谱隙区中各自的阿贝尔群{0},Z,2Z,Z2之间的一一对应的猜想。我们发展的主要工具是局部酉和正交投影的同伦的等变理论。此外,我们讨论了将幺正理论扩展到部分等距,为理解强无序、流动间隙材料提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信