DFM: Dialogue foundation model for universal large-scale dialogue-oriented task learning

IF 14.8
Zhi Chen , Da Ma , Hanqi Li , Lu Chen , Jiabao Ji , Yuncong Liu , Bei Chen , Mengyue Wu , Su Zhu , Xin Dong , Fujiang Ge , Qingliang Miao , Jian-Guang Lou , Shuai Fan , Kai Yu
{"title":"DFM: Dialogue foundation model for universal large-scale dialogue-oriented task learning","authors":"Zhi Chen ,&nbsp;Da Ma ,&nbsp;Hanqi Li ,&nbsp;Lu Chen ,&nbsp;Jiabao Ji ,&nbsp;Yuncong Liu ,&nbsp;Bei Chen ,&nbsp;Mengyue Wu ,&nbsp;Su Zhu ,&nbsp;Xin Dong ,&nbsp;Fujiang Ge ,&nbsp;Qingliang Miao ,&nbsp;Jian-Guang Lou ,&nbsp;Shuai Fan ,&nbsp;Kai Yu","doi":"10.1016/j.aiopen.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>Building a universal conversational agent has been a long-standing goal of the dialogue research community. Most previous works only focus on a small set of dialogue tasks. In this work, we aim to build a unified dialogue foundation model (DFM) which can be used to solve massive diverse dialogue tasks. To achieve this goal, a large-scale well-annotated dialogue dataset with rich task diversity (DialogZoo) is collected. We introduce a framework to unify all dialogue tasks and propose novel auxiliary self-supervised tasks to achieve stable training of DFM on the highly diverse large scale DialogZoo corpus. Experiments show that, compared with models of the same size, DFM can achieve competitive performance on very rich cross-domain downstream dialogue tasks. Furthermore, when scaling to large language models, DFM remains effective. This demonstrates that DFM largely extends the ability of unified dialogue pre-trained model.</div></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"6 ","pages":"Pages 108-117"},"PeriodicalIF":14.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651025000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building a universal conversational agent has been a long-standing goal of the dialogue research community. Most previous works only focus on a small set of dialogue tasks. In this work, we aim to build a unified dialogue foundation model (DFM) which can be used to solve massive diverse dialogue tasks. To achieve this goal, a large-scale well-annotated dialogue dataset with rich task diversity (DialogZoo) is collected. We introduce a framework to unify all dialogue tasks and propose novel auxiliary self-supervised tasks to achieve stable training of DFM on the highly diverse large scale DialogZoo corpus. Experiments show that, compared with models of the same size, DFM can achieve competitive performance on very rich cross-domain downstream dialogue tasks. Furthermore, when scaling to large language models, DFM remains effective. This demonstrates that DFM largely extends the ability of unified dialogue pre-trained model.
面向大范围对话的任务学习对话基础模型
建立一个通用的会话代理一直是对话研究界的长期目标。大多数以前的作品只关注一小部分对话任务。在这项工作中,我们的目标是建立一个统一的对话基础模型(DFM),该模型可以用于解决大量不同的对话任务。为了实现这一目标,收集了一个具有丰富任务多样性、标注良好的大规模对话数据集(DialogZoo)。我们引入了一个框架来统一所有的对话任务,并提出了新的辅助自监督任务,以实现DFM在高度多样化的大型DialogZoo语料库上的稳定训练。实验表明,与相同规模的模型相比,DFM在非常丰富的跨域下游对话任务上可以取得具有竞争力的性能。此外,当扩展到大型语言模型时,DFM仍然有效。这表明DFM在很大程度上扩展了统一对话预训练模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信