Synergizing transformer-based models and financial sentiment analysis: A framework for generative AI in economic decision-making

Nouri Hicham , Nassera Habbat
{"title":"Synergizing transformer-based models and financial sentiment analysis: A framework for generative AI in economic decision-making","authors":"Nouri Hicham ,&nbsp;Nassera Habbat","doi":"10.1016/j.ject.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a new way to analyze financial sentiment by combining advanced transformer-based models with generative artificial intelligence (AI) to better understand the language and context of financial discussions. The objective is to enhance the predictive accuracy of market behavior through improved understanding of investor sentiment. The proposed sentiment analysis framework leverages six domain-specific datasets: Social Sentiment Indices (X-Scores), Fin-SoMe, SemEval-2017 Task 5, Fin-Lin, Sanders, and Taborda. These datasets, primarily sourced from social media, reflect diverse investor perspectives. Generative AI models, like GPT-3.5 and GPT-4, are used to create more data, and the meaning of words is enhanced using techniques like BERT and Word2Vec. The model is trained with a cross-entropy loss function and fine-tuned using Few-shot Learning, Chain-of-Thought reasoning, and ReAct strategies, ensuring computational efficiency. Experimental results show consistent improvements across all datasets in accuracy, precision, recall, specificity, and F1 score. The use of generative AI and transformer architectures makes the model stronger and better at understanding how investors feel in real financial situations. This research contributes to the field of explicable AI in finance by demonstrating the impact of domain-adapted models and generative techniques in advancing sentiment analysis. The findings offer practical value for investors and analysts seeking data-driven insights into market dynamics and decision-making processes.</div></div>","PeriodicalId":100776,"journal":{"name":"Journal of Economy and Technology","volume":"4 ","pages":"Pages 146-170"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949948825000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a new way to analyze financial sentiment by combining advanced transformer-based models with generative artificial intelligence (AI) to better understand the language and context of financial discussions. The objective is to enhance the predictive accuracy of market behavior through improved understanding of investor sentiment. The proposed sentiment analysis framework leverages six domain-specific datasets: Social Sentiment Indices (X-Scores), Fin-SoMe, SemEval-2017 Task 5, Fin-Lin, Sanders, and Taborda. These datasets, primarily sourced from social media, reflect diverse investor perspectives. Generative AI models, like GPT-3.5 and GPT-4, are used to create more data, and the meaning of words is enhanced using techniques like BERT and Word2Vec. The model is trained with a cross-entropy loss function and fine-tuned using Few-shot Learning, Chain-of-Thought reasoning, and ReAct strategies, ensuring computational efficiency. Experimental results show consistent improvements across all datasets in accuracy, precision, recall, specificity, and F1 score. The use of generative AI and transformer architectures makes the model stronger and better at understanding how investors feel in real financial situations. This research contributes to the field of explicable AI in finance by demonstrating the impact of domain-adapted models and generative techniques in advancing sentiment analysis. The findings offer practical value for investors and analysts seeking data-driven insights into market dynamics and decision-making processes.
基于转换器的模型和金融情绪分析的协同作用:经济决策中生成人工智能的框架
本研究引入了一种分析金融情绪的新方法,将先进的基于变压器的模型与生成式人工智能(AI)相结合,以更好地理解金融讨论的语言和背景。目标是通过提高对投资者情绪的理解来提高市场行为的预测准确性。提出的情绪分析框架利用了六个特定领域的数据集:社会情绪指数(X-Scores)、Fin-SoMe、SemEval-2017 Task 5、Fin-Lin、Sanders和Taborda。这些数据集主要来自社交媒体,反映了投资者的不同观点。生成式人工智能模型,如GPT-3.5和GPT-4,用于创建更多的数据,并使用BERT和Word2Vec等技术增强单词的含义。该模型使用交叉熵损失函数进行训练,并使用Few-shot Learning、Chain-of-Thought推理和ReAct策略进行微调,以确保计算效率。实验结果显示,所有数据集在准确性、精密度、召回率、特异性和F1评分方面都有一致的改进。生成式人工智能和变压器架构的使用使模型更强大,更能理解投资者在真实金融状况下的感受。本研究通过展示领域适应模型和生成技术在推进情绪分析方面的影响,为金融领域的可解释人工智能领域做出了贡献。研究结果为寻求数据驱动的市场动态和决策过程洞察的投资者和分析师提供了实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信