On-board camera-based automatic zoning method for heading face by using computerized rock drilling cart

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yong-Feng Li , Huan Li , Jing Xiao , Weidong Ren , Mohammed Abdalla Elsharif Ibrahim
{"title":"On-board camera-based automatic zoning method for heading face by using computerized rock drilling cart","authors":"Yong-Feng Li ,&nbsp;Huan Li ,&nbsp;Jing Xiao ,&nbsp;Weidong Ren ,&nbsp;Mohammed Abdalla Elsharif Ibrahim","doi":"10.1016/j.acags.2025.100275","DOIUrl":null,"url":null,"abstract":"<div><div>During construction, drilling parameters are manually adjusted by the operator, which can affect the blasting effect due to inappropriate initial parameters. To address this issue, an automatic optimal drilling method based on image partitioning of the heading face is proposed: i) Obtain images of the heading face using a suitable vehicle camera, and calculate pixel coordinates on the virtual heading face through rock drilling cart positioning and virtual heading face positioning; ii) Apply the region growth algorithm to extract the image region of the heading face, segment the image into several super-pixel units using the linear iterative clustering algorithm, followed by combining super-pixels based on the gray difference criterion. The resulting super-pixel blocks serve as the training sample set for the rock-partition method based on super-pixels and support vector machine (SVM); iii) Establish a database of drilling parameters. The results demonstrate that, compared to the region growth algorithm, the classification method based on super-pixels and SVM has higher accuracy. The algorithm has high accuracy of partition effect and good real-time performance, providing a reliable basis for optimizing the opening parameters.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"27 ","pages":"Article 100275"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

During construction, drilling parameters are manually adjusted by the operator, which can affect the blasting effect due to inappropriate initial parameters. To address this issue, an automatic optimal drilling method based on image partitioning of the heading face is proposed: i) Obtain images of the heading face using a suitable vehicle camera, and calculate pixel coordinates on the virtual heading face through rock drilling cart positioning and virtual heading face positioning; ii) Apply the region growth algorithm to extract the image region of the heading face, segment the image into several super-pixel units using the linear iterative clustering algorithm, followed by combining super-pixels based on the gray difference criterion. The resulting super-pixel blocks serve as the training sample set for the rock-partition method based on super-pixels and support vector machine (SVM); iii) Establish a database of drilling parameters. The results demonstrate that, compared to the region growth algorithm, the classification method based on super-pixels and SVM has higher accuracy. The algorithm has high accuracy of partition effect and good real-time performance, providing a reliable basis for optimizing the opening parameters.
基于车载摄像头的微机凿岩车掘进工作面自动分区方法
施工过程中,钻孔参数由作业人员手动调整,由于初始参数不合适,会影响爆破效果。针对这一问题,提出了一种基于掘进工作面图像分割的自动优化钻进方法:i)利用合适的车载摄像头获取掘进工作面图像,通过凿岩车定位和虚拟掘进工作面定位计算虚拟掘进工作面像素坐标;ii)应用区域增长算法提取标题面图像区域,使用线性迭代聚类算法将图像分割成多个超像素单元,然后基于灰度差准则对超像素进行组合。得到的超像素块作为基于超像素和支持向量机(SVM)的岩石划分方法的训练样本集;iii)建立钻井参数数据库。结果表明,与区域增长算法相比,基于超像素和支持向量机的分类方法具有更高的准确率。该算法分割效果精度高,实时性好,为优化开孔参数提供了可靠的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信