{"title":"A novel strategy for electrochemical additive manufacturing: Femtosecond laser-assisted localized electrochemical deposition","authors":"Zhaoqiang Zou , Wanfei Ren , Jinkai Xu , Hanhan Wei , Zhanjiang Yu , Ningqian Tang , Huadong Yu","doi":"10.1016/j.ijmachtools.2025.104319","DOIUrl":null,"url":null,"abstract":"<div><div>Localized electrochemical deposition (LECD) exhibits significant advantages in fabricating microscale 3D metallic structures. However, conventional LECD technologies are inherently constrained by diffusion-controlled mechanisms, where pursuit of enhanced deposition efficiency inevitably degrades deposition quality (such as increased surface roughness and internal defects), consequently impairing structural mechanical properties. This study presents a femtosecond laser-assisted localized electrochemical deposition (FsLA-LECD) technology. By precisely coupling femtosecond laser irradiation with the electrodeposition microzone and leveraging laser energy to regulate electrodeposition process, this approach simultaneously achieves efficient fabrication of complex metallic microstructures with enhanced mechanical performance. The regulating effects of laser irradiation on mass transfer, nucleation kinetics, and grain growth evolution are investigated throughout the evolution process of point-surface-structure. Experimental and computational analysis elucidate that the laser-induced Marangoni effect within the reaction microenvironment enhances microzone electrolyte replenishment, consequently elevating deposition current density. This results in a volume deposition rate of 15.47 μm<sup>3</sup>/s, representing a 3 times enhancement over laser-free conditions. Laser-mediated regulation of deposition rates enabled fabrication of uniform-diameter, bamboo-like, and hourglass-shaped microstructures. Furthermore, pulsed laser energy facilitated stepwise current amplification, thereby inducing nanotwin formation within copper micro-geometrical features. This approach attained a tensile yield strength of 1.08 GPa, significantly surpassing that of traditional electrodeposited counterparts. This work demonstrates the capability of FsLA-LECD to simultaneously enable high-efficiency manufacturing and enhanced mechanical properties, establishing the groundwork for innovative approaches to high-performance micromanufacturing.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"211 ","pages":"Article 104319"},"PeriodicalIF":18.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695525000744","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Localized electrochemical deposition (LECD) exhibits significant advantages in fabricating microscale 3D metallic structures. However, conventional LECD technologies are inherently constrained by diffusion-controlled mechanisms, where pursuit of enhanced deposition efficiency inevitably degrades deposition quality (such as increased surface roughness and internal defects), consequently impairing structural mechanical properties. This study presents a femtosecond laser-assisted localized electrochemical deposition (FsLA-LECD) technology. By precisely coupling femtosecond laser irradiation with the electrodeposition microzone and leveraging laser energy to regulate electrodeposition process, this approach simultaneously achieves efficient fabrication of complex metallic microstructures with enhanced mechanical performance. The regulating effects of laser irradiation on mass transfer, nucleation kinetics, and grain growth evolution are investigated throughout the evolution process of point-surface-structure. Experimental and computational analysis elucidate that the laser-induced Marangoni effect within the reaction microenvironment enhances microzone electrolyte replenishment, consequently elevating deposition current density. This results in a volume deposition rate of 15.47 μm3/s, representing a 3 times enhancement over laser-free conditions. Laser-mediated regulation of deposition rates enabled fabrication of uniform-diameter, bamboo-like, and hourglass-shaped microstructures. Furthermore, pulsed laser energy facilitated stepwise current amplification, thereby inducing nanotwin formation within copper micro-geometrical features. This approach attained a tensile yield strength of 1.08 GPa, significantly surpassing that of traditional electrodeposited counterparts. This work demonstrates the capability of FsLA-LECD to simultaneously enable high-efficiency manufacturing and enhanced mechanical properties, establishing the groundwork for innovative approaches to high-performance micromanufacturing.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).