Anja Frantar , Katja Seme , Rok Gašperšič , Čedomir Oblak , Katja Šuster
{"title":"Isolation and characterization of two novel oral bacteriophages with anti-biofilm activity against Cutibacterium acnes","authors":"Anja Frantar , Katja Seme , Rok Gašperšič , Čedomir Oblak , Katja Šuster","doi":"10.1016/j.ijmm.2025.151668","DOIUrl":null,"url":null,"abstract":"<div><div>Bacteriophage therapy offers a promising solution to combat antibiotic-resistant infections, yet its potential against biofilm-associated pathogens in oral diseases remains underexplored. This study investigates the opportunistic bacterium <em>Cutibacterium acnes</em>, an overlooked contributor to dental implant and prosthetic joint infections. Biofilms formed by <em>C. acnes</em> are highly resilient and resistant to antibiotics, complicating treatment. Two novel lytic bacteriophages, Ristretto and Corretto, targeting <em>C. acnes</em>, were isolated from human saliva, with morphological analysis confirming their classification as siphoviruses. Their genome sequencing revealed no harmful antimicrobial resistance or virulence genes, making them suitable for therapeutic use. Remarkably, phage Corretto demonstrated a broad host range and achieved near-complete eradication of mature biofilms across multiple <em>C. acnes</em> strains, outperforming Ristretto in efficacy and strain coverage. The activity of these phages was dosage-dependent and varied across bacterial strains, revealing potential strain-specific resistance mechanisms within biofilms. These findings highlight bacteriophage therapy's potential to disrupt persistent biofilms where antibiotics fail, offering a new approach for treating biofilm-driven infections in dental and medical implantology. This study underscores the need for further research into phage-based strategies to address the growing global challenge of antimicrobial resistance and improve outcomes in biofilm-related diseases.</div></div>","PeriodicalId":50312,"journal":{"name":"International Journal of Medical Microbiology","volume":"320 ","pages":"Article 151668"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438422125000244","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteriophage therapy offers a promising solution to combat antibiotic-resistant infections, yet its potential against biofilm-associated pathogens in oral diseases remains underexplored. This study investigates the opportunistic bacterium Cutibacterium acnes, an overlooked contributor to dental implant and prosthetic joint infections. Biofilms formed by C. acnes are highly resilient and resistant to antibiotics, complicating treatment. Two novel lytic bacteriophages, Ristretto and Corretto, targeting C. acnes, were isolated from human saliva, with morphological analysis confirming their classification as siphoviruses. Their genome sequencing revealed no harmful antimicrobial resistance or virulence genes, making them suitable for therapeutic use. Remarkably, phage Corretto demonstrated a broad host range and achieved near-complete eradication of mature biofilms across multiple C. acnes strains, outperforming Ristretto in efficacy and strain coverage. The activity of these phages was dosage-dependent and varied across bacterial strains, revealing potential strain-specific resistance mechanisms within biofilms. These findings highlight bacteriophage therapy's potential to disrupt persistent biofilms where antibiotics fail, offering a new approach for treating biofilm-driven infections in dental and medical implantology. This study underscores the need for further research into phage-based strategies to address the growing global challenge of antimicrobial resistance and improve outcomes in biofilm-related diseases.
期刊介绍:
Pathogen genome sequencing projects have provided a wealth of data that need to be set in context to pathogenicity and the outcome of infections. In addition, the interplay between a pathogen and its host cell has become increasingly important to understand and interfere with diseases caused by microbial pathogens. IJMM meets these needs by focussing on genome and proteome analyses, studies dealing with the molecular mechanisms of pathogenicity and the evolution of pathogenic agents, the interactions between pathogens and host cells ("cellular microbiology"), and molecular epidemiology. To help the reader keeping up with the rapidly evolving new findings in the field of medical microbiology, IJMM publishes original articles, case studies and topical, state-of-the-art mini-reviews in a well balanced fashion. All articles are strictly peer-reviewed. Important topics are reinforced by 2 special issues per year dedicated to a particular theme. Finally, at irregular intervals, current opinions on recent or future developments in medical microbiology are presented in an editorial section.