MLPro 2.0 - Online machine learning in Python

IF 4.9
Detlef Arend, Laxmikant Shrikant Baheti, Steve Yuwono, Syamraj Purushamparambil Satheesh Kumar, Andreas Schwung
{"title":"MLPro 2.0 - Online machine learning in Python","authors":"Detlef Arend,&nbsp;Laxmikant Shrikant Baheti,&nbsp;Steve Yuwono,&nbsp;Syamraj Purushamparambil Satheesh Kumar,&nbsp;Andreas Schwung","doi":"10.1016/j.mlwa.2025.100715","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present version 2.0 of the open-source middleware MLPro for applied machine learning in Python. Notably, it introduces the new sub-framework MLPro-OA for online machine learning, focusing on standards and templates for classic and online-adaptive data stream processing (DSP/OADSP). As part of this, we provide three novel adaptation mechanisms:The first, event-oriented adaptation, enables localized, event-driven parameter updates within individual tasks. The second, cascaded adaptation, allows adaptation events to propagate across multiple dependent tasks, creating task-spanning adjustment cascades decoupled from the forward-facing DSP. The third, reverse adaptation, allows tasks to revise prior adjustments by explicitly processing obsolete instances discarded from a preceding sliding window. Furthermore, we provide insights into the underlying design criteria of MLPro-OA, which were developed through extensive requirements engineering. In the practical part of this work, we demonstrate the essential functionalities of MLPro-OA using reproducible examples.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"21 ","pages":"Article 100715"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present version 2.0 of the open-source middleware MLPro for applied machine learning in Python. Notably, it introduces the new sub-framework MLPro-OA for online machine learning, focusing on standards and templates for classic and online-adaptive data stream processing (DSP/OADSP). As part of this, we provide three novel adaptation mechanisms:The first, event-oriented adaptation, enables localized, event-driven parameter updates within individual tasks. The second, cascaded adaptation, allows adaptation events to propagate across multiple dependent tasks, creating task-spanning adjustment cascades decoupled from the forward-facing DSP. The third, reverse adaptation, allows tasks to revise prior adjustments by explicitly processing obsolete instances discarded from a preceding sliding window. Furthermore, we provide insights into the underlying design criteria of MLPro-OA, which were developed through extensive requirements engineering. In the practical part of this work, we demonstrate the essential functionalities of MLPro-OA using reproducible examples.
MLPro 2.0 - Python中的在线机器学习
在本文中,我们提出了开源中间件MLPro的2.0版本,用于在Python中应用机器学习。值得注意的是,它引入了用于在线机器学习的新子框架MLPro-OA,重点关注经典和在线自适应数据流处理(DSP/OADSP)的标准和模板。作为其中的一部分,我们提供了三种新的适应机制:第一种是面向事件的适应,支持在单个任务中进行本地化的、事件驱动的参数更新。第二种是级联自适应,允许自适应事件在多个相互依赖的任务之间传播,从而创建与面向前端的DSP解耦的任务跨调整级联。第三种是反向适应,它允许任务通过显式地处理从前面的滑动窗口中丢弃的过时实例来修改先前的调整。此外,我们提供了对MLPro-OA的底层设计标准的见解,这些标准是通过广泛的需求工程开发的。在本工作的实践部分,我们使用可重复的示例来演示MLPro-OA的基本功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信