Towards fair lights: A multi-agent masked deep reinforcement learning for efficient corridor-level traffic signal control

IF 14.5 Q1 TRANSPORTATION
Xiaocai Zhang, Lok Sang Chan, Neema Nassir, Majid Sarvi
{"title":"Towards fair lights: A multi-agent masked deep reinforcement learning for efficient corridor-level traffic signal control","authors":"Xiaocai Zhang,&nbsp;Lok Sang Chan,&nbsp;Neema Nassir,&nbsp;Majid Sarvi","doi":"10.1016/j.commtr.2025.100203","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an adaptive traffic signal control (ATSC) method for managing multiple intersections at the corridor level by proposing a novel multi-agent masked deep reinforcement learning (DRL) framework. The method extends the hybrid soft-actor-critic architecture to optimize green light timings for intersections across a corridor network, fostering a balance between vehicle flow and pedestrian movements with an emphasis on humanism, fairness, and equality. By integrating an innovative phase mask mechanism, our model dynamically adapts to the fluctuating demand of different transportation modalities by discovering new states or actions that could avoid local optima and achieve higher rewards. We comprehensively test our method using five naturalistic traffic scenarios in Melbourne, Australia. The results demonstrate a significant improvement in reducing the number of impacted travellers compared to existing DRL and other baseline methods. Furthermore, the inclusion of the phase mask mechanism enhances our model's performance through ablation analyses. The proposed framework not only supports a fairer traffic signal system but also provides a scalable, adaptable solution for diverse urban traffic conditions. .</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100203"},"PeriodicalIF":14.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an adaptive traffic signal control (ATSC) method for managing multiple intersections at the corridor level by proposing a novel multi-agent masked deep reinforcement learning (DRL) framework. The method extends the hybrid soft-actor-critic architecture to optimize green light timings for intersections across a corridor network, fostering a balance between vehicle flow and pedestrian movements with an emphasis on humanism, fairness, and equality. By integrating an innovative phase mask mechanism, our model dynamically adapts to the fluctuating demand of different transportation modalities by discovering new states or actions that could avoid local optima and achieve higher rewards. We comprehensively test our method using five naturalistic traffic scenarios in Melbourne, Australia. The results demonstrate a significant improvement in reducing the number of impacted travellers compared to existing DRL and other baseline methods. Furthermore, the inclusion of the phase mask mechanism enhances our model's performance through ablation analyses. The proposed framework not only supports a fairer traffic signal system but also provides a scalable, adaptable solution for diverse urban traffic conditions. .
走向公平的灯光:用于有效的走廊级交通信号控制的多智能体掩膜深度强化学习
本研究通过提出一种新的多智能体掩膜深度强化学习(DRL)框架,提出了一种用于管理走廊级多个交叉口的自适应交通信号控制(ATSC)方法。该方法扩展了混合软行为者-批评家架构,以优化走廊网络交叉路口的绿灯时间,在强调人文主义、公平和平等的情况下,促进车辆流量和行人运动之间的平衡。通过集成一个创新的相位掩模机制,我们的模型通过发现新的状态或行为来动态适应不同运输方式的波动需求,从而避免局部最优并获得更高的回报。我们在澳大利亚墨尔本的五个自然交通场景中全面测试了我们的方法。结果表明,与现有的DRL和其他基线方法相比,在减少受影响的旅行者数量方面取得了重大进展。此外,通过烧蚀分析,相位掩模机制的加入提高了模型的性能。提出的框架不仅支持一个更公平的交通信号系统,而且为不同的城市交通状况提供了可扩展的、适应性强的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信