Tailoring Frictional Properties of Surfaces Using Diffusion Models

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Even Nordhagen*, Henrik Andersen Sveinsson and Anders Malthe-Sørenssen, 
{"title":"Tailoring Frictional Properties of Surfaces Using Diffusion Models","authors":"Even Nordhagen*,&nbsp;Henrik Andersen Sveinsson and Anders Malthe-Sørenssen,&nbsp;","doi":"10.1021/acs.jpcc.5c02768","DOIUrl":null,"url":null,"abstract":"<p >This work introduces an approach for precisely designing surface friction properties using a conditional generative machine learning model, specifically a denoising diffusion probabilistic model (DDPM). We created a dataset of synthetic surfaces with frictional properties determined by molecular dynamics simulations, which trained the DDPM to predict surface structures from desired frictional outcomes. Unlike traditional trial-and-error and numerical optimization methods, our approach directly yields surface designs meeting specified frictional criteria with high accuracy and efficiency. This advancement in material surface engineering demonstrates the potential of machine learning to reduce the iterative nature of surface design processes. Our findings provide a pathway for tailoring surface properties and suggest broader applications in materials science where surface characteristics are critical.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 32","pages":"14559–14564"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5c02768","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c02768","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces an approach for precisely designing surface friction properties using a conditional generative machine learning model, specifically a denoising diffusion probabilistic model (DDPM). We created a dataset of synthetic surfaces with frictional properties determined by molecular dynamics simulations, which trained the DDPM to predict surface structures from desired frictional outcomes. Unlike traditional trial-and-error and numerical optimization methods, our approach directly yields surface designs meeting specified frictional criteria with high accuracy and efficiency. This advancement in material surface engineering demonstrates the potential of machine learning to reduce the iterative nature of surface design processes. Our findings provide a pathway for tailoring surface properties and suggest broader applications in materials science where surface characteristics are critical.

使用扩散模型裁剪表面的摩擦特性
这项工作介绍了一种使用条件生成机器学习模型精确设计表面摩擦特性的方法,特别是去噪扩散概率模型(DDPM)。我们创建了一个由分子动力学模拟确定摩擦特性的合成表面数据集,该数据集训练DDPM根据期望的摩擦结果预测表面结构。与传统的试错法和数值优化方法不同,我们的方法直接产生满足指定摩擦标准的表面设计,具有高精度和高效率。材料表面工程的这一进步证明了机器学习在减少表面设计过程的迭代性方面的潜力。我们的发现为定制表面特性提供了一条途径,并在表面特性至关重要的材料科学中提出了更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信