{"title":"Degree of the Grassmannian as an affine variety","authors":"Lek-Heng Lim , Ke Ye","doi":"10.1016/j.aim.2025.110459","DOIUrl":null,"url":null,"abstract":"<div><div>The degree of the Grassmannian with respect to the Plücker embedding is well-known. However, the Plücker embedding, while ubiquitous in pure mathematics, is almost never used in applied mathematics. In applied mathematics, the Grassmannian is usually embedded as projection matrices <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>≅</mo><mo>{</mo><mi>P</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>=</mo><mi>P</mi><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>tr</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span> or as involution matrices <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>≅</mo><mo>{</mo><mi>X</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>=</mo><mi>X</mi><mo>,</mo><mspace></mspace><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>I</mi><mo>,</mo><mspace></mspace><mi>tr</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo>}</mo></math></span>. We will determine an explicit expression for the degree of the Grassmannian with respect to these embeddings. In so doing, we resolved a conjecture of Devriendt, Friedman, Reinke, and Sturmfels about the degree of <span><math><mi>Gr</mi><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and in fact generalized it to <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. We also proved a set-theoretic variant of another conjecture of theirs about the limit of <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> in the sense of Gröbner degeneration.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110459"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003573","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The degree of the Grassmannian with respect to the Plücker embedding is well-known. However, the Plücker embedding, while ubiquitous in pure mathematics, is almost never used in applied mathematics. In applied mathematics, the Grassmannian is usually embedded as projection matrices or as involution matrices . We will determine an explicit expression for the degree of the Grassmannian with respect to these embeddings. In so doing, we resolved a conjecture of Devriendt, Friedman, Reinke, and Sturmfels about the degree of and in fact generalized it to . We also proved a set-theoretic variant of another conjecture of theirs about the limit of in the sense of Gröbner degeneration.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.