Yanfu Zeng , Xinyi Liu , Yifei Ding , Zhe Zheng , Tianhang Zhang , Xinyan Huang , Xinzheng Lu
{"title":"AI-powered automatic design of fire sprinkler layout for random building floorplans","authors":"Yanfu Zeng , Xinyi Liu , Yifei Ding , Zhe Zheng , Tianhang Zhang , Xinyan Huang , Xinzheng Lu","doi":"10.1016/j.iintel.2025.100167","DOIUrl":null,"url":null,"abstract":"<div><div>Fire sprinkler system is a commonly designed safety provision in modern buildings, yet the current manual drawing preparation process is burdened by time-consuming tasks, heavy workloads, and human errors. This study introduces an intelligent framework aimed at automating the drawing preparation process for fire sprinkler layout. A database of 120 sprinkler design drawings was compiled to train a pix2pixHD generative adversarial network (GAN). After training, the GAN model can generate sprinkler placement with a protection coverage of 99.5% for new and random architectural floorplans. Apart from ensuring code-compliant design, the total number of sprinklers designed by GAN is 13% lower than those arranged by professional engineers. By adopting this intelligent method, the time needed for design drawing preparation can be saved by 76%, and the cost-benefit of the sprinkler design can be improved by using reasonable fewer sprinklers.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 4","pages":"Article 100167"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991525000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fire sprinkler system is a commonly designed safety provision in modern buildings, yet the current manual drawing preparation process is burdened by time-consuming tasks, heavy workloads, and human errors. This study introduces an intelligent framework aimed at automating the drawing preparation process for fire sprinkler layout. A database of 120 sprinkler design drawings was compiled to train a pix2pixHD generative adversarial network (GAN). After training, the GAN model can generate sprinkler placement with a protection coverage of 99.5% for new and random architectural floorplans. Apart from ensuring code-compliant design, the total number of sprinklers designed by GAN is 13% lower than those arranged by professional engineers. By adopting this intelligent method, the time needed for design drawing preparation can be saved by 76%, and the cost-benefit of the sprinkler design can be improved by using reasonable fewer sprinklers.