Probing the limitations of multimodal language models for chemistry and materials research.

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nawaf Alampara, Mara Schilling-Wilhelmi, Martiño Ríos-García, Indrajeet Mandal, Pranav Khetarpal, Hargun Singh Grover, N M Anoop Krishnan, Kevin Maik Jablonka
{"title":"Probing the limitations of multimodal language models for chemistry and materials research.","authors":"Nawaf Alampara, Mara Schilling-Wilhelmi, Martiño Ríos-García, Indrajeet Mandal, Pranav Khetarpal, Hargun Singh Grover, N M Anoop Krishnan, Kevin Maik Jablonka","doi":"10.1038/s43588-025-00836-3","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in artificial intelligence have sparked interest in scientific assistants that could support researchers across the full spectrum of scientific workflows, from literature review to experimental design and data analysis. A key capability for such systems is the ability to process and reason about scientific information in both visual and textual forms-from interpreting spectroscopic data to understanding laboratory set-ups. Here we introduce MaCBench, a comprehensive benchmark for evaluating how vision language models handle real-world chemistry and materials science tasks across three core aspects: data extraction, experimental execution and results interpretation. Through a systematic evaluation of leading models, we find that although these systems show promising capabilities in basic perception tasks-achieving near-perfect performance in equipment identification and standardized data extraction-they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis and multi-step logical inference. Our insights have implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00836-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in artificial intelligence have sparked interest in scientific assistants that could support researchers across the full spectrum of scientific workflows, from literature review to experimental design and data analysis. A key capability for such systems is the ability to process and reason about scientific information in both visual and textual forms-from interpreting spectroscopic data to understanding laboratory set-ups. Here we introduce MaCBench, a comprehensive benchmark for evaluating how vision language models handle real-world chemistry and materials science tasks across three core aspects: data extraction, experimental execution and results interpretation. Through a systematic evaluation of leading models, we find that although these systems show promising capabilities in basic perception tasks-achieving near-perfect performance in equipment identification and standardized data extraction-they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis and multi-step logical inference. Our insights have implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.

探讨多模态语言模型在化学和材料研究中的局限性。
人工智能的最新进展激发了人们对科学助理的兴趣,这些助理可以支持研究人员完成从文献综述到实验设计和数据分析的所有科学工作流程。这种系统的一个关键功能是处理和推理视觉和文本形式的科学信息的能力——从解释光谱数据到理解实验室设置。在这里,我们介绍MaCBench,一个全面的基准,用于评估视觉语言模型如何处理现实世界的化学和材料科学任务,涉及三个核心方面:数据提取、实验执行和结果解释。通过对领先模型的系统评估,我们发现尽管这些系统在基本感知任务中表现出有希望的能力——在设备识别和标准化数据提取方面实现近乎完美的性能——但它们在空间推理、跨模态信息合成和多步骤逻辑推理方面表现出基本的局限性。我们的见解超出了化学和材料科学的范畴,表明开发可靠的多模态人工智能科学助手可能需要在管理合适的训练数据和训练这些模型的方法方面取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信