{"title":"Model-Based Causal Discovery for Zero-Inflated Count Data.","authors":"Junsouk Choi, Yang Ni","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Zero-inflated count data arise in a wide range of scientific areas such as social science, biology, and genomics. Very few causal discovery approaches can adequately account for excessive zeros as well as various features of multivariate count data such as overdispersion. In this paper, we propose a new zero-inflated generalized hypergeometric directed acyclic graph (ZiG-DAG) model for inference of causal structure from purely observational zero-inflated count data. The proposed ZiG-DAGs exploit a broad family of generalized hypergeometric probability distributions and are useful for modeling various types of zero-inflated count data with great flexibility. In addition, ZiG-DAGs allow for both linear and nonlinear causal relationships. We prove that the causal structure is identifiable for the proposed ZiG-DAGs via a general proof technique for count data, which is applicable beyond the proposed model for investigating causal identifiability. Score-based algorithms are developed for causal structure learning. Extensive synthetic experiments as well as a real dataset with known ground truth demonstrate the superior performance of the proposed method against state-of-the-art alternative methods in discovering causal structure from observational zero-inflated count data. An application of reverse-engineering a gene regulatory network from a single-cell RNA-sequencing dataset illustrates the utility of ZiG-DAGs in practice.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Zero-inflated count data arise in a wide range of scientific areas such as social science, biology, and genomics. Very few causal discovery approaches can adequately account for excessive zeros as well as various features of multivariate count data such as overdispersion. In this paper, we propose a new zero-inflated generalized hypergeometric directed acyclic graph (ZiG-DAG) model for inference of causal structure from purely observational zero-inflated count data. The proposed ZiG-DAGs exploit a broad family of generalized hypergeometric probability distributions and are useful for modeling various types of zero-inflated count data with great flexibility. In addition, ZiG-DAGs allow for both linear and nonlinear causal relationships. We prove that the causal structure is identifiable for the proposed ZiG-DAGs via a general proof technique for count data, which is applicable beyond the proposed model for investigating causal identifiability. Score-based algorithms are developed for causal structure learning. Extensive synthetic experiments as well as a real dataset with known ground truth demonstrate the superior performance of the proposed method against state-of-the-art alternative methods in discovering causal structure from observational zero-inflated count data. An application of reverse-engineering a gene regulatory network from a single-cell RNA-sequencing dataset illustrates the utility of ZiG-DAGs in practice.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.