Triphasic CT Radiomics Model for Preoperative Prediction of Hepatocellular Carcinoma Pathological Grading.

IF 3.4 3区 医学 Q2 ONCOLOGY
Journal of Hepatocellular Carcinoma Pub Date : 2025-08-06 eCollection Date: 2025-01-01 DOI:10.2147/JHC.S527056
Haibo Huang, Xianpan Pan, Yingdan Zhang, Jie Yang, Lei Chen, Qinping Zhao, Lifeng Huang, Wei Lu, Yaohong Deng, Yingying Huang, Ke Ding
{"title":"Triphasic CT Radiomics Model for Preoperative Prediction of Hepatocellular Carcinoma Pathological Grading.","authors":"Haibo Huang, Xianpan Pan, Yingdan Zhang, Jie Yang, Lei Chen, Qinping Zhao, Lifeng Huang, Wei Lu, Yaohong Deng, Yingying Huang, Ke Ding","doi":"10.2147/JHC.S527056","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and validate a triphasic CT-based radiomics model for the synchronous prediction of multiple critical pathological markers in hepatocellular carcinoma (HCC).</p><p><strong>Materials and methods: </strong>This retrospective study analyzed 174 patients with 187 hepatocellular carcinoma (HCC) lesions. Radiomic features (n = 2264) were extracted from arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images. Key features were selected using minimum redundancy maximum relevance (mRMR), SelectKBest, and least absolute shrinkage and selection operator (LASSO) algorithms. Logistic regression and support vector machine (SVM) classifiers were employed to develop individual phase-specific models and a triphasic fusion model. Model performance was evaluated through the area under the curve (AUC), sensitivity, specificity, decision curve analysis, and other metrics.</p><p><strong>Results: </strong>The triphasic fusion model demonstrated superior performance. In the testing 1 dataset, the triphasic fusion model achieved AUCs of 0.890 (95% CI: 0.741-1), 0.895 (95% CI: 0.781-1) and 0.829 (95% CI: 0.675-0.984) for Edmondson-Steiner (Ed) grading, Microvascular invasion (MVI) grading, and Satellite nodule (SN) grading, respectively. In the testing 2 (validation) dataset, the triphasic fusion model achieved AUCs of 0.836 (95% CI: 0.739-0.934), 0.871 (95% CI: 0.748-0.993) and 0.810 (95% CI: 0.656-0.963) for Ed, MVI, and SN grading, respectively. The performance of the fusion model was better than that of the single-phase models.</p><p><strong>Conclusion: </strong>The triphasic CT radiomics model provides a noninvasive tool for preoperative prediction of HCC pathological grading (Ed, MVI, SN), enhancing diagnostic accuracy for clinical decision-making and prognostic evaluation.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"12 ","pages":"1725-1742"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12336463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S527056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to develop and validate a triphasic CT-based radiomics model for the synchronous prediction of multiple critical pathological markers in hepatocellular carcinoma (HCC).

Materials and methods: This retrospective study analyzed 174 patients with 187 hepatocellular carcinoma (HCC) lesions. Radiomic features (n = 2264) were extracted from arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images. Key features were selected using minimum redundancy maximum relevance (mRMR), SelectKBest, and least absolute shrinkage and selection operator (LASSO) algorithms. Logistic regression and support vector machine (SVM) classifiers were employed to develop individual phase-specific models and a triphasic fusion model. Model performance was evaluated through the area under the curve (AUC), sensitivity, specificity, decision curve analysis, and other metrics.

Results: The triphasic fusion model demonstrated superior performance. In the testing 1 dataset, the triphasic fusion model achieved AUCs of 0.890 (95% CI: 0.741-1), 0.895 (95% CI: 0.781-1) and 0.829 (95% CI: 0.675-0.984) for Edmondson-Steiner (Ed) grading, Microvascular invasion (MVI) grading, and Satellite nodule (SN) grading, respectively. In the testing 2 (validation) dataset, the triphasic fusion model achieved AUCs of 0.836 (95% CI: 0.739-0.934), 0.871 (95% CI: 0.748-0.993) and 0.810 (95% CI: 0.656-0.963) for Ed, MVI, and SN grading, respectively. The performance of the fusion model was better than that of the single-phase models.

Conclusion: The triphasic CT radiomics model provides a noninvasive tool for preoperative prediction of HCC pathological grading (Ed, MVI, SN), enhancing diagnostic accuracy for clinical decision-making and prognostic evaluation.

术前预测肝细胞癌病理分级的三相CT放射组学模型。
目的:本研究旨在建立并验证一种基于ct的三相放射组学模型,用于同步预测肝细胞癌(HCC)的多种关键病理标志物。材料与方法:回顾性分析174例肝细胞癌(HCC)病变187例。从动脉期(AP)、静脉期(VP)和延迟期(DP) CT图像中提取放射学特征(n = 2264)。使用最小冗余最大相关性(mRMR)、SelectKBest和最小绝对收缩和选择算子(LASSO)算法选择关键特征。采用逻辑回归和支持向量机(SVM)分类器建立了具体阶段模型和三相融合模型。通过曲线下面积(AUC)、敏感性、特异性、决策曲线分析和其他指标来评估模型的性能。结果:三相融合模型表现出良好的性能。在测试1数据集中,三相融合模型的edmonson - steiner (Ed)分级、微血管侵袭(MVI)分级和卫星结节(SN)分级的auc分别为0.890 (95% CI: 0.741-1)、0.895 (95% CI: 0.781-1)和0.829 (95% CI: 0.675-0.984)。在测试2(验证)数据集中,三相融合模型的Ed、MVI和SN评分的auc分别为0.836 (95% CI: 0.739-0.934)、0.871 (95% CI: 0.748-0.993)和0.810 (95% CI: 0.656-0.963)。熔合模型的性能优于单相模型。结论:三相CT放射组学模型为术前预测HCC病理分级(Ed、MVI、SN)提供了一种无创工具,提高了临床决策和预后评估的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
2.40%
发文量
108
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信