Revealing the dynamic arrangement mechanism of SiCw under combined AC-DC electric fields for composite performance enhancement: Modeling, analysis, and experiments.

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-12-15 Epub Date: 2025-08-06 DOI:10.1016/j.jcis.2025.138632
Huanmin Yao, Haibao Mu, Maoqun Shen, Wenrui Tian, Wendong Li, Daning Zhang, Haoxiang Zhao, Andrea Cavallini, Guanjun Zhang
{"title":"Revealing the dynamic arrangement mechanism of SiCw under combined AC-DC electric fields for composite performance enhancement: Modeling, analysis, and experiments.","authors":"Huanmin Yao, Haibao Mu, Maoqun Shen, Wenrui Tian, Wendong Li, Daning Zhang, Haoxiang Zhao, Andrea Cavallini, Guanjun Zhang","doi":"10.1016/j.jcis.2025.138632","DOIUrl":null,"url":null,"abstract":"<p><p>Employing electric fields to induce directional arrangement of one-dimensional nanofillers within specific regions is a powerful strategy for enhancing the performance of composites. However, conventional single-mode electric fields (AC or DC) exhibit inherent \"orientation-distribution\" contradiction. Specifically, AC fields are effective for orientation but lack spatial control, while DC fields promote filler enrichment but fail to optimize orientation state. This study presents an innovative approach by establishing a theoretical framework that integrates both AC and DC electric fields along with a corresponding microscale dynamic model. This approach enables the precise and flexible manipulation of complex filler arrangements, thereby expanding opportunities for advanced material design. The model refines classical dielectrophoresis theory, incorporating interfacial charge and local electric field effects, elucidating the dynamic mechanisms of fillers under combined AC-DC electric fields. Numerical simulations reveal that AC fields primarily control orientation through dielectrophoresis, while DC fields regulate spatial distribution via electrophoresis. The synergistic combination of these two electric fields yields a pronounced \"orientation-enrichment\" effect, enabling the controlled and orderly arrangement of fillers within targeted areas. Moreover, high-aspect-ratio fillers promote chain formation but restrict rotation and migration, and frequencies above 1 kHz suppress alignment and interparticle attraction. Preliminary material design and preparation for enhanced electrical properties of renewable energy transmission device further indicate that this method is effective and flexible for complex application scenarios. This work advances our understanding of complex filler behavior in hybrid electric fields and offers a novel strategy for designing high-performance composites, paving the way for future innovations in material design.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 Pt 3","pages":"138632"},"PeriodicalIF":9.7000,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138632","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Employing electric fields to induce directional arrangement of one-dimensional nanofillers within specific regions is a powerful strategy for enhancing the performance of composites. However, conventional single-mode electric fields (AC or DC) exhibit inherent "orientation-distribution" contradiction. Specifically, AC fields are effective for orientation but lack spatial control, while DC fields promote filler enrichment but fail to optimize orientation state. This study presents an innovative approach by establishing a theoretical framework that integrates both AC and DC electric fields along with a corresponding microscale dynamic model. This approach enables the precise and flexible manipulation of complex filler arrangements, thereby expanding opportunities for advanced material design. The model refines classical dielectrophoresis theory, incorporating interfacial charge and local electric field effects, elucidating the dynamic mechanisms of fillers under combined AC-DC electric fields. Numerical simulations reveal that AC fields primarily control orientation through dielectrophoresis, while DC fields regulate spatial distribution via electrophoresis. The synergistic combination of these two electric fields yields a pronounced "orientation-enrichment" effect, enabling the controlled and orderly arrangement of fillers within targeted areas. Moreover, high-aspect-ratio fillers promote chain formation but restrict rotation and migration, and frequencies above 1 kHz suppress alignment and interparticle attraction. Preliminary material design and preparation for enhanced electrical properties of renewable energy transmission device further indicate that this method is effective and flexible for complex application scenarios. This work advances our understanding of complex filler behavior in hybrid electric fields and offers a novel strategy for designing high-performance composites, paving the way for future innovations in material design.

揭示交直流复合电场作用下SiCw增强复合材料性能的动态排列机制:建模、分析和实验。
利用电场诱导一维纳米填料在特定区域内的定向排列是提高复合材料性能的有效策略。然而,传统的单模电场(交流或直流)存在固有的“取向-分布”矛盾。其中,交流磁场对取向有效,但缺乏空间控制;直流磁场促进填料富集,但不能优化取向状态。本研究提出了一种创新的方法,建立了一个整合交流和直流电场的理论框架以及相应的微尺度动力学模型。这种方法能够精确和灵活地操纵复杂的填料安排,从而扩大了先进材料设计的机会。该模型改进了经典的介电电泳理论,将界面电荷和局部电场效应纳入其中,阐明了交直流复合电场作用下填料的动力学机制。数值模拟结果表明,交流磁场主要通过电泳控制取向,直流磁场主要通过电泳调节空间分布。这两个电场的协同组合产生了明显的“定向富集”效应,使填充物在目标区域内的控制和有序排列成为可能。此外,高纵横比填料促进了链的形成,但限制了旋转和迁移,频率高于1 kHz抑制了对准和粒子间的吸引。增强可再生能源传输装置电性能的初步材料设计和制备进一步表明,该方法在复杂应用场景下是有效和灵活的。这项工作促进了我们对混合电场中复杂填料行为的理解,并为设计高性能复合材料提供了一种新的策略,为未来材料设计的创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信