ST1-YtnP lactonase from extreme environment: A promising antivirulence agent against multidrug-resistant Pseudomonas aeruginosa.

IF 7.5
Jovana Curcic, Ivano Merendino, Danka Matijasevic, Branko Jovcic, Silvia Spriano, Milka Malesevic
{"title":"ST1-YtnP lactonase from extreme environment: A promising antivirulence agent against multidrug-resistant Pseudomonas aeruginosa.","authors":"Jovana Curcic, Ivano Merendino, Danka Matijasevic, Branko Jovcic, Silvia Spriano, Milka Malesevic","doi":"10.1016/j.biopha.2025.118443","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of multidrug-resistant (MDR) pathogens, particularly Pseudomonas aeruginosa, requires innovative therapeutic strategies. This study investigates the potential of ST1-YtnP lactonase, an enzyme isolated from the thermophilic bacterium Bacillus licheniformis, which is found in the extreme environment of the Vranjska Banja hot springs. The extreme conditions in this habitat offer untapped potential for the discovery of biotechnologically valuable, resilient enzymes. ST1-YtnP lactonase was shown to effectively degrade acyl-homoserine lactones (AHLs), thereby disrupting the quorum sensing (QS) system of P. aeruginosa and reducing its virulence. ST1-YtnP significantly reduced biofilm formation without inhibiting bacterial growth Furthermore, in vitro analysis revealed that ST1-YtnP lactonase exhibited a synergistic effect with gentamicin and an additive effect with meropenem, enhancing the efficacy of these antibiotics against P. aeruginosa MMA83. In vivo, the combination of meropenem and ST1-YtnP lactonase completely rescued Caenorhabditis elegans from infection, surpassing the protective effect of meropenem alone. ST1-YtnP lactonase showed no adverse effects on the survival of uninfected nematodes, while it significantly enhanced the survival of P. aeruginosa-infected nematodes treated with the enzyme. These findings emphasize the potential of ST1-YtnP lactonase as a novel antivirulence agent with promising biotechnological applications to combat antibiotic-resistant infections.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"190 ","pages":"118443"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biopha.2025.118443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of multidrug-resistant (MDR) pathogens, particularly Pseudomonas aeruginosa, requires innovative therapeutic strategies. This study investigates the potential of ST1-YtnP lactonase, an enzyme isolated from the thermophilic bacterium Bacillus licheniformis, which is found in the extreme environment of the Vranjska Banja hot springs. The extreme conditions in this habitat offer untapped potential for the discovery of biotechnologically valuable, resilient enzymes. ST1-YtnP lactonase was shown to effectively degrade acyl-homoserine lactones (AHLs), thereby disrupting the quorum sensing (QS) system of P. aeruginosa and reducing its virulence. ST1-YtnP significantly reduced biofilm formation without inhibiting bacterial growth Furthermore, in vitro analysis revealed that ST1-YtnP lactonase exhibited a synergistic effect with gentamicin and an additive effect with meropenem, enhancing the efficacy of these antibiotics against P. aeruginosa MMA83. In vivo, the combination of meropenem and ST1-YtnP lactonase completely rescued Caenorhabditis elegans from infection, surpassing the protective effect of meropenem alone. ST1-YtnP lactonase showed no adverse effects on the survival of uninfected nematodes, while it significantly enhanced the survival of P. aeruginosa-infected nematodes treated with the enzyme. These findings emphasize the potential of ST1-YtnP lactonase as a novel antivirulence agent with promising biotechnological applications to combat antibiotic-resistant infections.

极端环境ST1-YtnP内酯酶:一种有前途的抗多重耐药铜绿假单胞菌的抗毒剂。
多药耐药(MDR)病原体,特别是铜绿假单胞菌的出现,需要创新的治疗策略。ST1-YtnP内酯酶是一种在Vranjska Banja温泉极端环境中发现的从嗜热细菌地衣芽孢杆菌中分离出来的酶。这个栖息地的极端条件为发现生物技术上有价值的、有弹性的酶提供了尚未开发的潜力。ST1-YtnP内酯酶可有效降解酰基同丝氨酸内酯(AHLs),从而破坏铜绿假单胞菌的群体感应(QS)系统,降低其毒力。体外实验表明,ST1-YtnP内酯酶与庆大霉素具有协同作用,与美罗培南具有加性作用,增强了抗生素对铜绿假单胞菌MMA83的抑制作用。在体内,美罗培南联合ST1-YtnP内酯酶完全拯救了秀丽隐杆线虫免受感染,超过了美罗培南单独使用的保护作用。ST1-YtnP内酯酶对未感染线虫的存活无不良影响,但对铜绿假单胞菌感染线虫的存活有显著的促进作用。这些发现强调了ST1-YtnP内酯酶作为一种新型抗毒剂的潜力,在对抗抗生素耐药感染方面具有广阔的生物技术应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信