{"title":"Flipping operators and locally harmonic Maass forms.","authors":"Kathrin Bringmann, Andreas Mono, Larry Rolen","doi":"10.1007/s11139-025-01183-7","DOIUrl":null,"url":null,"abstract":"<p><p>In the theory of integral weight harmonic Maass forms of manageable growth, two key differential operators, the Bol operator and the shadow operator, play a fundamental role. Harmonic Maass forms of manageable growth canonically split into two parts, and each operator controls one of these parts. A third operator, called the flipping operator, exchanges the role of these two parts. Maass-Poincaré series (of parabolic type) form a convenient basis of negative weight harmonic Maass forms of manageable growth, and flipping has the effect of negating an index. Recently, there has been much interest in locally harmonic Maass forms defined by the first author, Kane, and Kohnen. These are lifts of Poincaré series of hyperbolic type, and are intimately related to the Shimura and Shintani lifts. In this note, we prove that a similar property holds for the flipping operator applied to these Poincaré series.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":"68 2","pages":"40"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11139-025-01183-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the theory of integral weight harmonic Maass forms of manageable growth, two key differential operators, the Bol operator and the shadow operator, play a fundamental role. Harmonic Maass forms of manageable growth canonically split into two parts, and each operator controls one of these parts. A third operator, called the flipping operator, exchanges the role of these two parts. Maass-Poincaré series (of parabolic type) form a convenient basis of negative weight harmonic Maass forms of manageable growth, and flipping has the effect of negating an index. Recently, there has been much interest in locally harmonic Maass forms defined by the first author, Kane, and Kohnen. These are lifts of Poincaré series of hyperbolic type, and are intimately related to the Shimura and Shintani lifts. In this note, we prove that a similar property holds for the flipping operator applied to these Poincaré series.
期刊介绍:
The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections.
The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest:
Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.