Flipping operators and locally harmonic Maass forms.

IF 0.7 3区 数学 Q3 MATHEMATICS
Ramanujan Journal Pub Date : 2025-01-01 Epub Date: 2025-08-08 DOI:10.1007/s11139-025-01183-7
Kathrin Bringmann, Andreas Mono, Larry Rolen
{"title":"Flipping operators and locally harmonic Maass forms.","authors":"Kathrin Bringmann, Andreas Mono, Larry Rolen","doi":"10.1007/s11139-025-01183-7","DOIUrl":null,"url":null,"abstract":"<p><p>In the theory of integral weight harmonic Maass forms of manageable growth, two key differential operators, the Bol operator and the shadow operator, play a fundamental role. Harmonic Maass forms of manageable growth canonically split into two parts, and each operator controls one of these parts. A third operator, called the flipping operator, exchanges the role of these two parts. Maass-Poincaré series (of parabolic type) form a convenient basis of negative weight harmonic Maass forms of manageable growth, and flipping has the effect of negating an index. Recently, there has been much interest in locally harmonic Maass forms defined by the first author, Kane, and Kohnen. These are lifts of Poincaré series of hyperbolic type, and are intimately related to the Shimura and Shintani lifts. In this note, we prove that a similar property holds for the flipping operator applied to these Poincaré series.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":"68 2","pages":"40"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11139-025-01183-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the theory of integral weight harmonic Maass forms of manageable growth, two key differential operators, the Bol operator and the shadow operator, play a fundamental role. Harmonic Maass forms of manageable growth canonically split into two parts, and each operator controls one of these parts. A third operator, called the flipping operator, exchanges the role of these two parts. Maass-Poincaré series (of parabolic type) form a convenient basis of negative weight harmonic Maass forms of manageable growth, and flipping has the effect of negating an index. Recently, there has been much interest in locally harmonic Maass forms defined by the first author, Kane, and Kohnen. These are lifts of Poincaré series of hyperbolic type, and are intimately related to the Shimura and Shintani lifts. In this note, we prove that a similar property holds for the flipping operator applied to these Poincaré series.

翻转算子和局部调和质量形式。
在可管理增长的积分权调和质量形式理论中,两个关键的微分算子,Bol算子和阴影算子,起着基本的作用。调和质量形式的可管理增长通常分为两个部分,每个算子控制其中一个部分。第三个操作符,称为翻转操作符,交换这两个部分的角色。抛物型的Maass- poincar级数形成了可管理增长的负权和质量形式的便利基础,翻转具有负指标的作用。最近,人们对第一作者Kane和Kohnen定义的局部谐波质量形式很感兴趣。这些升降机属于庞加莱系列双曲型升降机,与志村升降机和新谷升降机密切相关。在这篇笔记中,我们证明了一个类似的性质适用于这些庞卡罗级数的翻转算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ramanujan Journal
Ramanujan Journal 数学-数学
CiteScore
1.40
自引率
14.30%
发文量
133
审稿时长
6-12 weeks
期刊介绍: The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections. The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest: Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信