Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jonas Lill, Kalina Petrova, Simon Weber
{"title":"Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound","authors":"Jonas Lill,&nbsp;Kalina Petrova,&nbsp;Simon Weber","doi":"10.1007/s00453-025-01306-y","DOIUrl":null,"url":null,"abstract":"<div><p><span>MaxCut</span> is a classical <span>\\(\\textsf{NP}\\)</span>-complete problem and a crucial building block in many combinatorial algorithms. The famous <i>Edwards-Erdös bound</i> states that any connected graph on <i>n</i> vertices with <i>m</i> edges contains a cut of size at least <span>\\(\\frac{m}{2}+\\frac{n-1}{4}\\)</span>. Crowston, Jones and Mnich [Algorithmica, 2015] showed that the <span>MaxCut</span> problem on simple connected graphs admits an FPT algorithm, where the parameter <i>k</i> is the difference between the desired cut size <i>c</i> and the lower bound given by the Edwards-Erdös bound. This was later improved by Etscheid and Mnich [Algorithmica, 2017] to run in parameterized linear time, i.e., <span>\\(f(k)\\cdot O(m)\\)</span>. We improve upon this result in two ways: Firstly, we extend the algorithm to work also for <i>multigraphs</i> (alternatively, graphs with positive integer weights). Secondly, we change the parameter; instead of the difference to the Edwards-Erdös bound, we use the difference to the <i>Poljak-Turzík bound</i>. The Poljak-Turzík bound states that any weighted graph <i>G</i> has a cut of weight at least <span>\\(\\frac{w(G)}{2}+\\frac{w_{MSF}(G)}{4}\\)</span>, where <i>w</i>(<i>G</i>) denotes the total weight of <i>G</i>, and <span>\\(w_{MSF}(G)\\)</span> denotes the weight of its minimum spanning forest. In connected simple graphs the two bounds are equivalent, but for multigraphs the Poljak-Turzík bound can be larger and thus yield a smaller parameter <i>k</i>. Our algorithm also runs in parameterized linear time, i.e., <span>\\(f(k)\\cdot O(m+n)\\)</span>.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"87 7","pages":"983 - 1007"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-025-01306-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

MaxCut is a classical \(\textsf{NP}\)-complete problem and a crucial building block in many combinatorial algorithms. The famous Edwards-Erdös bound states that any connected graph on n vertices with m edges contains a cut of size at least \(\frac{m}{2}+\frac{n-1}{4}\). Crowston, Jones and Mnich [Algorithmica, 2015] showed that the MaxCut problem on simple connected graphs admits an FPT algorithm, where the parameter k is the difference between the desired cut size c and the lower bound given by the Edwards-Erdös bound. This was later improved by Etscheid and Mnich [Algorithmica, 2017] to run in parameterized linear time, i.e., \(f(k)\cdot O(m)\). We improve upon this result in two ways: Firstly, we extend the algorithm to work also for multigraphs (alternatively, graphs with positive integer weights). Secondly, we change the parameter; instead of the difference to the Edwards-Erdös bound, we use the difference to the Poljak-Turzík bound. The Poljak-Turzík bound states that any weighted graph G has a cut of weight at least \(\frac{w(G)}{2}+\frac{w_{MSF}(G)}{4}\), where w(G) denotes the total weight of G, and \(w_{MSF}(G)\) denotes the weight of its minimum spanning forest. In connected simple graphs the two bounds are equivalent, but for multigraphs the Poljak-Turzík bound can be larger and thus yield a smaller parameter k. Our algorithm also runs in parameterized linear time, i.e., \(f(k)\cdot O(m+n)\).

Abstract Image

Abstract Image

Abstract Image

参数化在Poljak-Turzík界以上的多图中的线性时间MaxCut。
MaxCut是一个经典的NP完全问题,是许多组合算法的重要组成部分。著名的Edwards-Erdös界指出,任何有n个顶点和m条边的连通图都包含一个大小至少为m2 + n - 14的切。Crowston, Jones和mich [Algorithmica, 2015]表明,简单连通图上的MaxCut问题允许使用FPT算法,其中参数k是期望切割尺寸c与Edwards-Erdös界给出的下界之间的差。后来Etscheid和mich [Algorithmica, 2017]改进了这一点,使其在参数化的线性时间内运行,即f (k)·O (m)。我们通过两种方式改进了这个结果:首先,我们将算法扩展到也适用于多图(或者,具有正整数权重的图)。其次,我们改变参数;我们使用与Poljak-Turzík绑定的差值,而不是与Edwards-Erdös绑定的差值。Poljak-Turzík界表示任意加权图G的权值至少为w(G) 2 + w MSF (G) 4,其中w(G)表示G的总权值,w MSF (G)表示其最小生成林的权值。在连通的简单图中,这两个边界是等价的,但对于多图,Poljak-Turzík边界可以更大,从而产生更小的参数k。我们的算法也在参数化的线性时间内运行,即f (k)·O (m + n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信