Wolfgang Rannetbauer, Simon Hubmer, Carina Hambrock, Ronny Ramlau
{"title":"A practical guide to optimizing industrial thermal spraying through comparative multi-objective optimization.","authors":"Wolfgang Rannetbauer, Simon Hubmer, Carina Hambrock, Ronny Ramlau","doi":"10.1186/s13362-025-00177-w","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving both high quality and cost-efficiency are two critical yet often conflicting objectives in manufacturing and maintenance processes. Quality standards vary depending on the specific application, while cost-effectiveness remains a constant priority. These competing objectives lead to multi-objective optimization problems, where algorithms are employed to identify Pareto-optimal solutions-compromise points which provide decision-makers with feasible parameter settings. The successful application of such optimization algorithms relies on the ability to model the underlying physical system, which is typically complex, through either physical or data-driven approaches, and to represent it mathematically. This paper applies three multi-objective optimization algorithms to determine optimal process parameters for high-velocity oxygen fuel (HVOF) thermal spraying. Their ability to enhance coating performance while maintaining process efficiency is systematically evaluated, considering practical constraints and industrial feasibility. Practical validation trials are conducted to verify the approximate theoretical solutions generated by the algorithms, ensuring their applicability and reliability in real-world scenarios. By exploring the performance of these diverse algorithms in an industrial setting, this study offers insights into their practical applicability, guiding both researchers and practitioners in enhancing process efficiency and product quality in the coating industry.</p>","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"15 1","pages":"12"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-025-00177-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving both high quality and cost-efficiency are two critical yet often conflicting objectives in manufacturing and maintenance processes. Quality standards vary depending on the specific application, while cost-effectiveness remains a constant priority. These competing objectives lead to multi-objective optimization problems, where algorithms are employed to identify Pareto-optimal solutions-compromise points which provide decision-makers with feasible parameter settings. The successful application of such optimization algorithms relies on the ability to model the underlying physical system, which is typically complex, through either physical or data-driven approaches, and to represent it mathematically. This paper applies three multi-objective optimization algorithms to determine optimal process parameters for high-velocity oxygen fuel (HVOF) thermal spraying. Their ability to enhance coating performance while maintaining process efficiency is systematically evaluated, considering practical constraints and industrial feasibility. Practical validation trials are conducted to verify the approximate theoretical solutions generated by the algorithms, ensuring their applicability and reliability in real-world scenarios. By exploring the performance of these diverse algorithms in an industrial setting, this study offers insights into their practical applicability, guiding both researchers and practitioners in enhancing process efficiency and product quality in the coating industry.