A photothermal-promoted cascade nanozyme to enhance hydroxyl radical/nitric oxide generation for reactive oxygen species-modulated catalytic/gas therapy.

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2026-01-01 Epub Date: 2025-08-06 DOI:10.1016/j.jcis.2025.138653
Linna Chang, Yan Qin, Zhou Shen, Di Wu, Xiaoping Yin, Leyong Zeng
{"title":"A photothermal-promoted cascade nanozyme to enhance hydroxyl radical/nitric oxide generation for reactive oxygen species-modulated catalytic/gas therapy.","authors":"Linna Chang, Yan Qin, Zhou Shen, Di Wu, Xiaoping Yin, Leyong Zeng","doi":"10.1016/j.jcis.2025.138653","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS) are critical in tumor therapy, but the antioxidant tumor microenvironment severely restricts the ROS-modulated antitumor efficacy. In this study, a photothermal-promoted cascade nanozyme (MnO<sub>2</sub>@Lap/PAH/L-Arg@Au) was constructed by modifying β-lapachone (β-Lap), poly(allylamine hydrochloride) (PAH), and L-arginine (L-Arg) and depositing gold nanoparticles (AuNPs) on hollow manganese dioxide (MnO<sub>2</sub>), enhancing ROS-modulated catalytic/gas combination therapy. The pH- and glutathione-responsive hollow MnO<sub>2</sub> degradation released β-Lap to elevate the generation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), which substantially activated and AuNPs-mediated hydroxyl radical (·OH) generation. Moreover, H<sub>2</sub>O<sub>2</sub>/·OH induces L-Arg to produce highly toxic nitric oxide (NO), and the Au nanoshell with high photothermal conversion efficiency (38.6 %) further enhanced ROS/NO generation. By reducing adenosine triphosphate production and inducing mitochondrial dysfunction, the combination of photothermal/catalytic/gas therapy greatly triggered cell apoptosis and inhibited tumor growth. Thus, the developed MnO<sub>2</sub>@Lap/PAH/L-Arg@Au nanozyme established a dynamic cascade pathway of \"ROS-driven NO release\", and achieved photothermal-promoted catalytic/gas therapy.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"701 ","pages":"138653"},"PeriodicalIF":9.7000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138653","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive oxygen species (ROS) are critical in tumor therapy, but the antioxidant tumor microenvironment severely restricts the ROS-modulated antitumor efficacy. In this study, a photothermal-promoted cascade nanozyme (MnO2@Lap/PAH/L-Arg@Au) was constructed by modifying β-lapachone (β-Lap), poly(allylamine hydrochloride) (PAH), and L-arginine (L-Arg) and depositing gold nanoparticles (AuNPs) on hollow manganese dioxide (MnO2), enhancing ROS-modulated catalytic/gas combination therapy. The pH- and glutathione-responsive hollow MnO2 degradation released β-Lap to elevate the generation of hydrogen peroxide (H2O2), which substantially activated and AuNPs-mediated hydroxyl radical (·OH) generation. Moreover, H2O2/·OH induces L-Arg to produce highly toxic nitric oxide (NO), and the Au nanoshell with high photothermal conversion efficiency (38.6 %) further enhanced ROS/NO generation. By reducing adenosine triphosphate production and inducing mitochondrial dysfunction, the combination of photothermal/catalytic/gas therapy greatly triggered cell apoptosis and inhibited tumor growth. Thus, the developed MnO2@Lap/PAH/L-Arg@Au nanozyme established a dynamic cascade pathway of "ROS-driven NO release", and achieved photothermal-promoted catalytic/gas therapy.

一种光热促进级联纳米酶,用于增强羟基自由基/一氧化氮的生成,用于活性氧物种调节的催化/气体治疗。
活性氧(Reactive oxygen species, ROS)在肿瘤治疗中起着至关重要的作用,但抗氧化的肿瘤微环境严重制约了ROS调控的抗肿瘤效果。在本研究中,通过修饰β-拉帕酮(β-Lap)、聚丙烯胺盐酸(PAH)和l-精氨酸(L-Arg),并在空心二氧化锰(MnO2)上沉积金纳米粒子(AuNPs),构建光热促进级联纳米酶(MnO2@Lap/PAH/L-Arg@Au),增强ros调节的催化/气体联合治疗。pH和谷胱甘肽响应的中空MnO2降解释放β-Lap,促进过氧化氢(H2O2)的生成,从而大大激活和aunps介导的羟基自由基(·OH)的生成。H2O2/·OH诱导L-Arg生成高毒性一氧化氮(NO),具有高光热转化效率(38.6%)的Au纳米壳进一步促进了ROS/NO的生成。光热/催化/气体联合治疗通过减少三磷酸腺苷生成和诱导线粒体功能障碍,极大地触发细胞凋亡,抑制肿瘤生长。由此,开发的MnO2@Lap/PAH/L-Arg@Au纳米酶建立了“ros驱动NO释放”的动态级联途径,实现了光热促进的催化/气体治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信