Edge-bipancyclicity of hypercubes with faulty edges

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Qianhong Liu, Fan Wang
{"title":"Edge-bipancyclicity of hypercubes with faulty edges","authors":"Qianhong Liu,&nbsp;Fan Wang","doi":"10.1016/j.tcs.2025.115503","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the edge-bipancyclicity property of hypercubes with faulty edges. For <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, let <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be an <em>n</em>-dimensional hypercube, and let <em>F</em> be a set of faulty edges in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≤</mo><mn>3</mn><mi>n</mi><mo>−</mo><mn>11</mn></math></span>. If every vertex in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> has a degree of at least 2 and no 4-cycle in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> has a pair of non-adjacent vertices both of degree 2, then every edge <em>e</em> in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> lies on a fault-free cycle of every even length from 8 to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, with two exceptions: (1) there exists a 4-cycle in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> containing the edge <em>e</em> such that the vertices on the 4-cycle which are not incident with <em>e</em> both have a degree of 2; (2) there exist two vertices of degree 2 which are not endpoints of edge <em>e</em> but are adjacent to the same endpoint of <em>e</em> in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span>. This result improves upon some known results on edge-bipancyclicity of hypercubes with faulty edges.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1056 ","pages":"Article 115503"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004414","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the edge-bipancyclicity property of hypercubes with faulty edges. For n4, let Qn be an n-dimensional hypercube, and let F be a set of faulty edges in Qn such that |F|3n11. If every vertex in QnF has a degree of at least 2 and no 4-cycle in QnF has a pair of non-adjacent vertices both of degree 2, then every edge e in QnF lies on a fault-free cycle of every even length from 8 to 2n, with two exceptions: (1) there exists a 4-cycle in QnF containing the edge e such that the vertices on the 4-cycle which are not incident with e both have a degree of 2; (2) there exist two vertices of degree 2 which are not endpoints of edge e but are adjacent to the same endpoint of e in QnF. This result improves upon some known results on edge-bipancyclicity of hypercubes with faulty edges.
边有缺陷的超立方体的边-双环性
本文研究了具有缺陷边的超立方体的边-双环性。当n≥4时,设Qn为n维超立方体,设F为Qn中|F|≤3n−11的故障边集合。如果Qn−F中每个顶点的度数至少为2,并且Qn−F中没有一个4-环中有一对度数均为2的非相邻顶点,则Qn−F中的每个边e都位于一个8 ~ 2n的偶数长度的无故障环上,但有两种例外:(1)Qn−F中存在一个包含边e的4-环,使得与e无关的4-环上的顶点的度数均为2;(2)在Qn−F中存在两个2次顶点,它们不是边e的端点,但与边e的同一端点相邻。这个结果改进了一些已知的关于有缺陷边的超立方体边-双环性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信