Mutation-specific structural changes in BRAF: understanding dimerization and drug binding for targeted therapy.

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Minjie Zhao, Rabia Zafar, Saad Serfraz, Kun Wu
{"title":"Mutation-specific structural changes in BRAF: understanding dimerization and drug binding for targeted therapy.","authors":"Minjie Zhao, Rabia Zafar, Saad Serfraz, Kun Wu","doi":"10.1080/07391102.2025.2543358","DOIUrl":null,"url":null,"abstract":"<p><p>The dimerization of BRAF with CRAF is a critical regulatory mechanism within the MAPK/ERK signaling cascade, and its disruption by mutations in the BRAF kinase domain contributes to tumorigenesis across various cancers. While wild-type BRAF depends on RAS-mediated dimerization for activation, oncogenic mutations alter this dependency, impacting structural conformation, ATP/drug binding, and downstream signaling. Despite extensive functional data, the structural and biophysical consequences of these mutations remain poorly defined. Here, we examine five BRAF mutations oncogenic (V600E, G469E, D594G) and benign (N581S, E586K) through molecular dynamics simulations, ATP-binding assessments, and drug interaction analyses involving Sorafenib and U0126. Our results suggest that V600E stabilizes the activation loop in an active, monomeric form, bypassing dimerization and conferring resistance to Sorafenib. G469E retains dimerization dependence, shows intermediate activity, and exhibits moderate drug responsiveness. D594G, a kinase-inactive mutant, functions as a scaffold for CRAF activation, with transient ATP-induced stabilization but minimal Sorafenib sensitivity. Benign variants maintain wild-type-like structural integrity, dimer stability, and inhibitor response. Simulations highlight mutation-specific effects on key regions, including the P-loop, DFG motif, and catalytic loop, and reveal distinct conformational landscapes through free energy and compactness analyses. Our findings provide a mechanistic framework linking structure to function in BRAF mutants, supporting mutation-guided therapeutic strategies in precision oncology.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-19"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2543358","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dimerization of BRAF with CRAF is a critical regulatory mechanism within the MAPK/ERK signaling cascade, and its disruption by mutations in the BRAF kinase domain contributes to tumorigenesis across various cancers. While wild-type BRAF depends on RAS-mediated dimerization for activation, oncogenic mutations alter this dependency, impacting structural conformation, ATP/drug binding, and downstream signaling. Despite extensive functional data, the structural and biophysical consequences of these mutations remain poorly defined. Here, we examine five BRAF mutations oncogenic (V600E, G469E, D594G) and benign (N581S, E586K) through molecular dynamics simulations, ATP-binding assessments, and drug interaction analyses involving Sorafenib and U0126. Our results suggest that V600E stabilizes the activation loop in an active, monomeric form, bypassing dimerization and conferring resistance to Sorafenib. G469E retains dimerization dependence, shows intermediate activity, and exhibits moderate drug responsiveness. D594G, a kinase-inactive mutant, functions as a scaffold for CRAF activation, with transient ATP-induced stabilization but minimal Sorafenib sensitivity. Benign variants maintain wild-type-like structural integrity, dimer stability, and inhibitor response. Simulations highlight mutation-specific effects on key regions, including the P-loop, DFG motif, and catalytic loop, and reveal distinct conformational landscapes through free energy and compactness analyses. Our findings provide a mechanistic framework linking structure to function in BRAF mutants, supporting mutation-guided therapeutic strategies in precision oncology.

BRAF突变特异性结构改变:了解二聚体和靶向治疗的药物结合。
BRAF与CRAF的二聚化是MAPK/ERK信号级联中的一个关键调控机制,BRAF激酶结构域突变对其破坏有助于多种癌症的肿瘤发生。野生型BRAF依赖于ras介导的二聚化来激活,而致癌突变改变了这种依赖性,影响了结构构象、ATP/药物结合和下游信号。尽管有大量的功能数据,但这些突变的结构和生物物理后果仍然不明确。在这里,我们通过分子动力学模拟、atp结合评估和涉及索拉非尼和U0126的药物相互作用分析,研究了5种BRAF突变的致癌(V600E、G469E、D594G)和良性(N581S、E586K)。我们的研究结果表明,V600E以一种活性的单体形式稳定了激活环,绕过了二聚化并赋予了对索拉非尼的抗性。G469E保持二聚体依赖性,表现出中等活性,并表现出适度的药物反应性。D594G是一种激酶失活突变体,作为CRAF激活的支架,具有瞬时atp诱导的稳定,但索拉非尼敏感性极低。良性变异保持野生型的结构完整性、二聚体稳定性和抑制剂反应。模拟强调了突变对关键区域的特异性影响,包括p环、DFG基序和催化环,并通过自由能和紧密度分析揭示了不同的构象景观。我们的发现提供了BRAF突变体结构与功能联系的机制框架,支持精确肿瘤学的突变导向治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信