Why NHS hospital co-morbidity research may be wrong: how clinical coding fails to identify the impact of diabetes mellitus on cancer survival.

IF 6.8 1区 医学 Q1 ONCOLOGY
K Zucker, C McInerney, A Glaser, P Baxter, G Hall
{"title":"Why NHS hospital co-morbidity research may be wrong: how clinical coding fails to identify the impact of diabetes mellitus on cancer survival.","authors":"K Zucker, C McInerney, A Glaser, P Baxter, G Hall","doi":"10.1038/s41416-025-03136-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Significant volumes of research rely on secondary care diagnostic coding to identify comorbidities however little is known about its accuracy at a population level or if this influences subsequent analysis.</p><p><strong>Methods: </strong>Retrospective observational study utilising real world data for all cancers, prostate cancer and breast cancer patients diagnosed at Leeds Cancer Centre from 2005 and 2018. Three different data definitions were used to identify patients with diabetes in each cohort: (1) clinical coding alone, (2) HbA1c blood test alone (3) either clinical coding or abnormal HbA1c. Cohort characteristics, diagnosis dates and Cox derived survival was compared across diabetes definitions.</p><p><strong>Results: </strong>123,841 cancer patients were identified including 13,964 with diabetes. Clinical coding failed to identify 14.6% of diabetic cancer patients with a temporal misclassification rate of 17.5%. Sole reliance on clinical coding overestimated the negative effect of DM on median survival across all cancers and 3.17 years in breast cancer.</p><p><strong>Discussion: </strong>Clinical coding provides inaccurate diabetes diagnosis date and detection resulting in meaningful differences in analytic outcomes. This supports the use of more detailed comorbidity data definitions. Results casts doubt over research reliant on hospital clinical coding alone and the generalisability of some comorbidity and frailty scoring systems.</p>","PeriodicalId":9243,"journal":{"name":"British Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41416-025-03136-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Significant volumes of research rely on secondary care diagnostic coding to identify comorbidities however little is known about its accuracy at a population level or if this influences subsequent analysis.

Methods: Retrospective observational study utilising real world data for all cancers, prostate cancer and breast cancer patients diagnosed at Leeds Cancer Centre from 2005 and 2018. Three different data definitions were used to identify patients with diabetes in each cohort: (1) clinical coding alone, (2) HbA1c blood test alone (3) either clinical coding or abnormal HbA1c. Cohort characteristics, diagnosis dates and Cox derived survival was compared across diabetes definitions.

Results: 123,841 cancer patients were identified including 13,964 with diabetes. Clinical coding failed to identify 14.6% of diabetic cancer patients with a temporal misclassification rate of 17.5%. Sole reliance on clinical coding overestimated the negative effect of DM on median survival across all cancers and 3.17 years in breast cancer.

Discussion: Clinical coding provides inaccurate diabetes diagnosis date and detection resulting in meaningful differences in analytic outcomes. This supports the use of more detailed comorbidity data definitions. Results casts doubt over research reliant on hospital clinical coding alone and the generalisability of some comorbidity and frailty scoring systems.

为什么NHS医院共发病研究可能是错误的:临床编码如何未能确定糖尿病对癌症生存的影响。
背景:大量的研究依赖于二级保健诊断编码来识别合并症,但对其在人群水平上的准确性知之甚少,或者这是否影响后续分析。方法:回顾性观察研究,利用2005年至2018年在利兹癌症中心诊断的所有癌症、前列腺癌和乳腺癌患者的真实世界数据。采用三种不同的数据定义来识别每个队列中的糖尿病患者:(1)单独的临床编码;(2)单独的HbA1c血检;(3)临床编码或HbA1c异常。比较不同糖尿病定义的队列特征、诊断日期和Cox衍生生存率。结果:共发现123841例癌症患者,其中糖尿病患者13964例。临床编码不能识别14.6%的糖尿病癌患者,时间误分率为17.5%。单纯依赖临床编码高估了糖尿病对所有癌症中位生存期的负面影响,乳腺癌中位生存期为3.17年。讨论:临床编码提供了不准确的糖尿病诊断日期和检测,导致分析结果有意义的差异。这支持使用更详细的合并症数据定义。结果对仅依赖医院临床编码的研究以及一些共病和虚弱评分系统的通用性提出了质疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
British Journal of Cancer
British Journal of Cancer 医学-肿瘤学
CiteScore
15.10
自引率
1.10%
发文量
383
审稿时长
6 months
期刊介绍: The British Journal of Cancer is one of the most-cited general cancer journals, publishing significant advances in translational and clinical cancer research.It also publishes high-quality reviews and thought-provoking comment on all aspects of cancer prevention,diagnosis and treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信