Iron-cobalt dual atomic sites in N, P-codoped carbon nanobelts as a multifunctional catalyst for Zn-air/iodide hybrid batteries.

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2026-01-01 Epub Date: 2025-08-06 DOI:10.1016/j.jcis.2025.138640
Hanwen He, Depeng Zhang, Xinshuang Lin, Hongrui Yang, Jiabei Yu, Hangyuan Xing, Rong Gao, Yukun Liu, Sen Zhang, Chao Deng
{"title":"Iron-cobalt dual atomic sites in N, P-codoped carbon nanobelts as a multifunctional catalyst for Zn-air/iodide hybrid batteries.","authors":"Hanwen He, Depeng Zhang, Xinshuang Lin, Hongrui Yang, Jiabei Yu, Hangyuan Xing, Rong Gao, Yukun Liu, Sen Zhang, Chao Deng","doi":"10.1016/j.jcis.2025.138640","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of high-performance and multifunctional catalysts is a key issue in Zinc-air/iodide hybrid battery (ZAIHB). In this study, iron‑cobalt dual atomic sites (DAS) embedded in a biomass-derived (N, P) heteroatom-codoped carbon nanobelt (NPCB) framework were designed as a multifunctional catalyst for ZAIHB. Theoretical analysis reveals that the structure matching on both dual-atomic-centers and local electronic engineering contribute to the promoted catalytic activities for oxygen and iodide redox reactions. In addition, the nitrogen (N)-, and phosphorus (P)-codoped carbon nanobelts contributed to the highly porous and freestanding substrate, which endowed rapid kinetics. Benefiting from the above advantageous features, FeCo DAS@NPCB exhibits the excellent multifunctional catalytic properties for oxygen/iodide redox reactions. The full ZAIHB battery with the FeCo DAS@NPCB cathode exhibited high energy efficiency (77.4 %) and a long cycle life (over 300 h). Moreover, the solid-state ZAIHB with a hydrogel electrolyte showed good flexibility and stability during charge/discharge cycling. More impressively, the cell shows high reliability during the transition from exposure to air to an oxygen free environment with the replacement of oxygen reduction reaction (ORR) by iodide reduction reaction (IRR). This unique mechanism results in the high adaptability of the fabricated ZAIHB to serve multifarious working environments. Therefore, this study introduces a novel strategy for the design and construction of multifunctional catalysts, and promotes the rapid development of highly efficient ZAIHB for diverse electronics.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"701 ","pages":"138640"},"PeriodicalIF":9.7000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138640","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of high-performance and multifunctional catalysts is a key issue in Zinc-air/iodide hybrid battery (ZAIHB). In this study, iron‑cobalt dual atomic sites (DAS) embedded in a biomass-derived (N, P) heteroatom-codoped carbon nanobelt (NPCB) framework were designed as a multifunctional catalyst for ZAIHB. Theoretical analysis reveals that the structure matching on both dual-atomic-centers and local electronic engineering contribute to the promoted catalytic activities for oxygen and iodide redox reactions. In addition, the nitrogen (N)-, and phosphorus (P)-codoped carbon nanobelts contributed to the highly porous and freestanding substrate, which endowed rapid kinetics. Benefiting from the above advantageous features, FeCo DAS@NPCB exhibits the excellent multifunctional catalytic properties for oxygen/iodide redox reactions. The full ZAIHB battery with the FeCo DAS@NPCB cathode exhibited high energy efficiency (77.4 %) and a long cycle life (over 300 h). Moreover, the solid-state ZAIHB with a hydrogel electrolyte showed good flexibility and stability during charge/discharge cycling. More impressively, the cell shows high reliability during the transition from exposure to air to an oxygen free environment with the replacement of oxygen reduction reaction (ORR) by iodide reduction reaction (IRR). This unique mechanism results in the high adaptability of the fabricated ZAIHB to serve multifarious working environments. Therefore, this study introduces a novel strategy for the design and construction of multifunctional catalysts, and promotes the rapid development of highly efficient ZAIHB for diverse electronics.

N, p共掺杂碳纳米带中铁钴双原子位作为锌-空气/碘化物混合电池的多功能催化剂。
探索高性能、多功能催化剂是锌-空气/碘混合电池(ZAIHB)的关键问题。在这项研究中,铁钴双原子位(DAS)嵌入在生物质衍生的(N, P)杂原子共掺杂碳纳米带(NPCB)框架中,被设计为ZAIHB的多功能催化剂。理论分析表明,双原子中心的结构匹配和局部电子工程都有助于提高氧和碘化物氧化还原反应的催化活性。此外,氮(N)-和磷(P)-共掺杂的碳纳米带有助于形成高度多孔和独立的底物,这赋予了快速的动力学。得益于以上优点,FeCo DAS@NPCB在氧/碘氧化还原反应中表现出优异的多功能催化性能。采用FeCo DAS@NPCB阴极的全ZAIHB电池具有高能量效率(77.4%)和长循环寿命(超过300小时)。此外,水凝胶电解质的固态ZAIHB在充放电循环中表现出良好的柔韧性和稳定性。更令人印象深刻的是,电池在从暴露于空气到无氧环境的过渡过程中表现出高可靠性,其中氧还原反应(ORR)被碘还原反应(IRR)取代。这种独特的机制导致制造的ZAIHB具有很高的适应性,可以服务于各种工作环境。因此,本研究为多功能催化剂的设计和构建提供了一种新的策略,并促进了高效ZAIHB在各种电子领域的快速发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信