Digitized counterdiabatic quantum optimization for bin packing problem

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Ruoqian Xu, Sebastián V. Romero, Jialiang Tang, Yue Ban, Xi Chen
{"title":"Digitized counterdiabatic quantum optimization for bin packing problem","authors":"Ruoqian Xu,&nbsp;Sebastián V. Romero,&nbsp;Jialiang Tang,&nbsp;Yue Ban,&nbsp;Xi Chen","doi":"10.1140/epjqt/s40507-025-00402-w","DOIUrl":null,"url":null,"abstract":"<div><p>The bin packing problem (BPP), a classical NP-hard combinatorial optimization challenge, has emerged as a promising application for quantum computing. In this work, we tackle the one-dimensional BPP (1dBPP) using a digitized counterdiabatic quantum approximate optimization algorithm (DC-QAOA) that incorporates counterdiabatic (CD) driving to achieve a 40% higher feasibility ratio than standard QAOA, while reducing quantum resource requirements. We investigate three ansatz schemes -DC-QAOA, CD-inspired ansatz, and CD-mixer ansatz - each integrating CD terms with distinct combinations of cost and mixer Hamiltonians, resulting in different DC-QAOA variants. Numerical simulations demonstrate that these DC-QAOA variants maintain solution accuracy with less than 5% variance across varying iteration numbers, circuit depths, and Hamiltonian step sizes. Moreover, they require approximately 7 to 8 times fewer measurements to achieve comparable precision under the same parameter variations. Experimental validation on a 10-item 1dBPP instance using IBM quantum computers shows the CD-mixer ansatz achieves five times more feasibility solutions and greater robustness against NISQ noise. Collectively, these results establish DC-QAOA as a resource-efficient framework for combinatorial optimization on near-term quantum devices.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00402-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00402-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The bin packing problem (BPP), a classical NP-hard combinatorial optimization challenge, has emerged as a promising application for quantum computing. In this work, we tackle the one-dimensional BPP (1dBPP) using a digitized counterdiabatic quantum approximate optimization algorithm (DC-QAOA) that incorporates counterdiabatic (CD) driving to achieve a 40% higher feasibility ratio than standard QAOA, while reducing quantum resource requirements. We investigate three ansatz schemes -DC-QAOA, CD-inspired ansatz, and CD-mixer ansatz - each integrating CD terms with distinct combinations of cost and mixer Hamiltonians, resulting in different DC-QAOA variants. Numerical simulations demonstrate that these DC-QAOA variants maintain solution accuracy with less than 5% variance across varying iteration numbers, circuit depths, and Hamiltonian step sizes. Moreover, they require approximately 7 to 8 times fewer measurements to achieve comparable precision under the same parameter variations. Experimental validation on a 10-item 1dBPP instance using IBM quantum computers shows the CD-mixer ansatz achieves five times more feasibility solutions and greater robustness against NISQ noise. Collectively, these results establish DC-QAOA as a resource-efficient framework for combinatorial optimization on near-term quantum devices.

装箱问题的数字化反绝热量子优化
装箱问题(BPP)是一个经典的NP-hard组合优化挑战,已成为量子计算的一个有前途的应用。在这项工作中,我们使用数字化反非绝对数量子近似优化算法(DC-QAOA)解决一维BPP (1dBPP)问题,该算法结合了反非绝对数(CD)驱动,实现了比标准QAOA高40%的可行性比,同时减少了量子资源需求。我们研究了三种分析方案——DC-QAOA、CD-inspired ansatz和CD-mixer ansatz——每一种都将CD项与不同的成本和混合器哈密顿量组合在一起,从而产生不同的DC-QAOA变体。数值模拟表明,这些DC-QAOA变体在不同的迭代次数、电路深度和哈密顿步长上保持求解精度,方差小于5%。此外,在相同的参数变化下,它们需要大约7到8倍的测量量才能达到相当的精度。使用IBM量子计算机在10项1dBPP实例上进行的实验验证表明,CD-mixer ansatz实现了5倍的可行性解决方案,并且对NISQ噪声具有更强的鲁棒性。总的来说,这些结果建立了DC-QAOA作为近期量子器件组合优化的资源高效框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信