Higher (equivariant) topological complexity of Milnor manifolds

IF 0.5 4区 数学 Q2 MATHEMATICS
Navnath Daundkar, Bittu Singh
{"title":"Higher (equivariant) topological complexity of Milnor manifolds","authors":"Navnath Daundkar,&nbsp;Bittu Singh","doi":"10.1007/s40062-025-00376-7","DOIUrl":null,"url":null,"abstract":"<div><p>J. Milnor introduced a specific class of codimension-1 submanifolds in the product of projective spaces, known as Milnor manifolds. This paper establishes precise bounds on the higher topological complexity of these manifolds and provides exact values for this invariant for numerous Milnor manifolds. Furthermore, we improve the upper bounds on the higher equivariant topological complexity. As an application, we obtain sharper bounds on the higher equivariant topological complexity of Milnor manifolds with free <span>\\(\\mathbb {Z}_2\\)</span> and <span>\\(S^1\\)</span>-actions.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 3","pages":"437 - 453"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-025-00376-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

J. Milnor introduced a specific class of codimension-1 submanifolds in the product of projective spaces, known as Milnor manifolds. This paper establishes precise bounds on the higher topological complexity of these manifolds and provides exact values for this invariant for numerous Milnor manifolds. Furthermore, we improve the upper bounds on the higher equivariant topological complexity. As an application, we obtain sharper bounds on the higher equivariant topological complexity of Milnor manifolds with free \(\mathbb {Z}_2\) and \(S^1\)-actions.

米尔诺流形的高(等变)拓扑复杂性
米尔诺在射影空间的积中引入了一类特殊的余维数为1的子流形,称为米尔诺流形。本文建立了这些Milnor流形的高拓扑复杂度的精确界,并给出了该不变量的精确值。进一步,我们改进了高等变拓扑复杂度的上界。作为一个应用,我们在具有自由\(\mathbb {Z}_2\)和\(S^1\) -作用的Milnor流形的较高等变拓扑复杂度上得到了更清晰的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信