Anisotropic mechanical response and aliovalent doping-induced strengthening in CaF2 single crystals: a combined experimental and first-principles study

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-07-18 DOI:10.1039/D5CE00508F
Yeqi Zhuo, Shukuan Guo, Bo Zhang, Zhen Zhang, Dapeng Jiang, Junyang Liu, Lizhi Fang, Huamin Kou and Liangbi Su
{"title":"Anisotropic mechanical response and aliovalent doping-induced strengthening in CaF2 single crystals: a combined experimental and first-principles study","authors":"Yeqi Zhuo, Shukuan Guo, Bo Zhang, Zhen Zhang, Dapeng Jiang, Junyang Liu, Lizhi Fang, Huamin Kou and Liangbi Su","doi":"10.1039/D5CE00508F","DOIUrl":null,"url":null,"abstract":"<p >CaF<small><sub>2</sub></small> single crystals, despite their excellent optical properties, are limited in extreme environments by intrinsic brittleness and low mechanical strength. In this study, we investigate the anisotropic mechanical behavior and strengthening mechanisms of pure and Y<small><sup>3+</sup></small>-doped CaF<small><sub>2</sub></small> crystals. Nanoindentation and uniaxial compression tests reveal significant mechanical anisotropy: the &lt;100&gt; orientation exhibits the highest Young's modulus, compressive strength, and Vickers hardness, followed by the &lt;110&gt; and &lt;111&gt; orientations. This trend contrasts sharply with conventional face-centered cubic metals and covalent semiconductors. Importantly, Y<small><sup>3+</sup></small> doping further elevates these properties. Notably, doping with about 1 at% Y<small><sup>3+</sup></small> increases the compressive strength along the &lt;111&gt; direction by 94%, from 101 MPa to 196 MPa. We attribute the mechanical anisotropy to variations in Coulomb interactions between like-charged ions during compression along different crystallographic directions. The strengthening effect of Y<small><sup>3+</sup></small> doping is explained by lattice distortion and enhanced Y–F bond strength compared to native Ca–F bonds. These findings provide valuable insights for understanding and designing optical devices for extreme conditions.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 32","pages":" 5449-5458"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00508f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CaF2 single crystals, despite their excellent optical properties, are limited in extreme environments by intrinsic brittleness and low mechanical strength. In this study, we investigate the anisotropic mechanical behavior and strengthening mechanisms of pure and Y3+-doped CaF2 crystals. Nanoindentation and uniaxial compression tests reveal significant mechanical anisotropy: the <100> orientation exhibits the highest Young's modulus, compressive strength, and Vickers hardness, followed by the <110> and <111> orientations. This trend contrasts sharply with conventional face-centered cubic metals and covalent semiconductors. Importantly, Y3+ doping further elevates these properties. Notably, doping with about 1 at% Y3+ increases the compressive strength along the <111> direction by 94%, from 101 MPa to 196 MPa. We attribute the mechanical anisotropy to variations in Coulomb interactions between like-charged ions during compression along different crystallographic directions. The strengthening effect of Y3+ doping is explained by lattice distortion and enhanced Y–F bond strength compared to native Ca–F bonds. These findings provide valuable insights for understanding and designing optical devices for extreme conditions.

Abstract Image

CaF2单晶的各向异性力学响应和价掺杂诱导强化:实验和第一性原理的结合研究
CaF2单晶虽然具有优异的光学性能,但由于其固有的脆性和较低的机械强度,在极端环境中受到限制。在这项研究中,我们研究了纯和掺Y3+的CaF2晶体的各向异性力学行为和强化机制。纳米压痕和单轴压缩试验显示了显著的力学各向异性:取向的杨氏模量、抗压强度和维氏硬度最高,其次是<;和& lt; 111年比;取向。这种趋势与传统的面心立方金属和共价半导体形成鲜明对比。重要的是,Y3+的掺杂进一步提高了这些性能。值得注意的是,在% Y3+中掺1左右,沿<;111>;从101 MPa增加到196 MPa,减小了94%。我们将力学各向异性归因于沿不同晶体学方向压缩过程中同种带电离子之间库仑相互作用的变化。Y3+掺杂的强化效应可以通过晶格畸变和Y-F键强度比原生Ca-F键增强来解释。这些发现为理解和设计极端条件下的光学器件提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信