Crystal engineering of rare earth heteroleptic complexes: phosphine oxide ligand control, POM-directed assembly, and performance metrics

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-07-15 DOI:10.1039/D5CE00455A
Jian-Jie Xu, Lin-Lin Wang, Ying-Long Wang, Gui-Xiong Guo, Jian-Ming Liu, Li-Xiong Dai, Min Liu and Qiong-Hua Jin
{"title":"Crystal engineering of rare earth heteroleptic complexes: phosphine oxide ligand control, POM-directed assembly, and performance metrics","authors":"Jian-Jie Xu, Lin-Lin Wang, Ying-Long Wang, Gui-Xiong Guo, Jian-Ming Liu, Li-Xiong Dai, Min Liu and Qiong-Hua Jin","doi":"10.1039/D5CE00455A","DOIUrl":null,"url":null,"abstract":"<p >This study explores crystal engineering strategies for rare earth heteroleptic complexes, focusing on ligand design, supramolecular control, and functional performance. Phosphine oxide ligands (TPPO) synergize steric/electronic effects to stabilize coordination geometries, while mixed-ligand systems (<em>e.g.</em>, TPPO/phen) enhance Eu<small><sup>3+</sup></small> luminescence (26.88% quantum yield). Polyoxometalates (POMs) template 3D architectures <em>via</em> hydrogen/charge interactions, enabling &gt;95% photocatalytic dye degradation and &gt;200 °C thermal stability. Rare earth-transition metal systems integrate 2D/3D topologies and multifunctionality (luminescence, gas adsorption) through electronic coupling. Additionally, carbon-based oxygen ligand systems (<em>e.g.</em>, β-diketonates) demonstrate the applicability of these core strategies—leveraging synergistic N-donor coordination and supramolecular interactions to achieve advanced functionalities like temperature-responsive luminescence. Future work will prioritize flexible ligand engineering and stimuli-responsive designs for applications in clean energy and quantum technologies, establishing a roadmap for advanced rare earth materials.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 32","pages":" 5389-5397"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00455a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00455a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores crystal engineering strategies for rare earth heteroleptic complexes, focusing on ligand design, supramolecular control, and functional performance. Phosphine oxide ligands (TPPO) synergize steric/electronic effects to stabilize coordination geometries, while mixed-ligand systems (e.g., TPPO/phen) enhance Eu3+ luminescence (26.88% quantum yield). Polyoxometalates (POMs) template 3D architectures via hydrogen/charge interactions, enabling >95% photocatalytic dye degradation and >200 °C thermal stability. Rare earth-transition metal systems integrate 2D/3D topologies and multifunctionality (luminescence, gas adsorption) through electronic coupling. Additionally, carbon-based oxygen ligand systems (e.g., β-diketonates) demonstrate the applicability of these core strategies—leveraging synergistic N-donor coordination and supramolecular interactions to achieve advanced functionalities like temperature-responsive luminescence. Future work will prioritize flexible ligand engineering and stimuli-responsive designs for applications in clean energy and quantum technologies, establishing a roadmap for advanced rare earth materials.

Abstract Image

稀土杂络合物的晶体工程:氧化膦配体控制,pom定向组装和性能指标
本研究探讨稀土异亲配合物的晶体工程策略,重点关注配体设计、超分子控制和功能性能。氧化膦配体(TPPO)协同立体/电子效应稳定配位几何,而混合配体体系(如TPPO/phen)增强Eu3+发光(量子产率26.88%)。聚金属氧酸盐(pom)通过氢/电荷相互作用模板3D结构,实现95%的光催化染料降解和200°C的热稳定性。稀土过渡金属系统通过电子耦合集成了2D/3D拓扑结构和多功能(发光,气体吸附)。此外,碳基氧配体系统(例如β-二酮酸酯)证明了这些核心策略的适用性——利用协同n-供体配位和超分子相互作用来实现温度响应发光等高级功能。未来的工作将优先考虑柔性配体工程和刺激响应设计,用于清洁能源和量子技术的应用,建立先进稀土材料的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信