Jian-Jie Xu, Lin-Lin Wang, Ying-Long Wang, Gui-Xiong Guo, Jian-Ming Liu, Li-Xiong Dai, Min Liu and Qiong-Hua Jin
{"title":"Crystal engineering of rare earth heteroleptic complexes: phosphine oxide ligand control, POM-directed assembly, and performance metrics","authors":"Jian-Jie Xu, Lin-Lin Wang, Ying-Long Wang, Gui-Xiong Guo, Jian-Ming Liu, Li-Xiong Dai, Min Liu and Qiong-Hua Jin","doi":"10.1039/D5CE00455A","DOIUrl":null,"url":null,"abstract":"<p >This study explores crystal engineering strategies for rare earth heteroleptic complexes, focusing on ligand design, supramolecular control, and functional performance. Phosphine oxide ligands (TPPO) synergize steric/electronic effects to stabilize coordination geometries, while mixed-ligand systems (<em>e.g.</em>, TPPO/phen) enhance Eu<small><sup>3+</sup></small> luminescence (26.88% quantum yield). Polyoxometalates (POMs) template 3D architectures <em>via</em> hydrogen/charge interactions, enabling >95% photocatalytic dye degradation and >200 °C thermal stability. Rare earth-transition metal systems integrate 2D/3D topologies and multifunctionality (luminescence, gas adsorption) through electronic coupling. Additionally, carbon-based oxygen ligand systems (<em>e.g.</em>, β-diketonates) demonstrate the applicability of these core strategies—leveraging synergistic N-donor coordination and supramolecular interactions to achieve advanced functionalities like temperature-responsive luminescence. Future work will prioritize flexible ligand engineering and stimuli-responsive designs for applications in clean energy and quantum technologies, establishing a roadmap for advanced rare earth materials.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 32","pages":" 5389-5397"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00455a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00455a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores crystal engineering strategies for rare earth heteroleptic complexes, focusing on ligand design, supramolecular control, and functional performance. Phosphine oxide ligands (TPPO) synergize steric/electronic effects to stabilize coordination geometries, while mixed-ligand systems (e.g., TPPO/phen) enhance Eu3+ luminescence (26.88% quantum yield). Polyoxometalates (POMs) template 3D architectures via hydrogen/charge interactions, enabling >95% photocatalytic dye degradation and >200 °C thermal stability. Rare earth-transition metal systems integrate 2D/3D topologies and multifunctionality (luminescence, gas adsorption) through electronic coupling. Additionally, carbon-based oxygen ligand systems (e.g., β-diketonates) demonstrate the applicability of these core strategies—leveraging synergistic N-donor coordination and supramolecular interactions to achieve advanced functionalities like temperature-responsive luminescence. Future work will prioritize flexible ligand engineering and stimuli-responsive designs for applications in clean energy and quantum technologies, establishing a roadmap for advanced rare earth materials.