Thermal stresses in multiring MEMS gyroscopes: Mathematical modeling with experimental validation

IF 4.9 2区 工程技术 Q1 ACOUSTICS
Mehran Hosseini-Pishrobat , Erdinc Tatar
{"title":"Thermal stresses in multiring MEMS gyroscopes: Mathematical modeling with experimental validation","authors":"Mehran Hosseini-Pishrobat ,&nbsp;Erdinc Tatar","doi":"10.1016/j.jsv.2025.119345","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature is, arguably, the predominant environmental variable impacting the performance of MEMS gyroscopes. Nevertheless, examination and formulation of the solid mechanics underlying the effects of temperature, especially regarding thermal stresses, remains largely unexplored in the literature. Motivated to address this issue, we lay out a novel framework to mathematically model the effects of thermal stresses on a multiring gyroscope’s stiffness matrix. We also take into account the temperature dependency of material properties, including Young’s modulus and coefficient of thermal expansion (CTE). Adhering to the variational principles of solid mechanics and linear thermoelasticity, we formulate the displacement field calculation of the gyroscope considering ring-beam continuity/boundary constraints. We use the Ritz method to convert and solve the subsequent optimization problems as quadratic programs (QPs). We obtain analytical expressions for the stiffness matrix variations under thermal stresses. These results distinguish terms induced by nonhomogeneous boundary conditions from those caused by thermal deformations in the gyroscope’s moving structure. Such boundary conditions account for 1) expansion/contraction of the internal suspension and 2) thermo-mechanical effects due to the different CTEs across MEMS layers, including the glass substrate and the die-attach material. We compare our method against finite element simulations and validate it using experimental data from our 58 kHz, 3.2 mm-diameter gyroscope.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"618 ","pages":"Article 119345"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25004183","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature is, arguably, the predominant environmental variable impacting the performance of MEMS gyroscopes. Nevertheless, examination and formulation of the solid mechanics underlying the effects of temperature, especially regarding thermal stresses, remains largely unexplored in the literature. Motivated to address this issue, we lay out a novel framework to mathematically model the effects of thermal stresses on a multiring gyroscope’s stiffness matrix. We also take into account the temperature dependency of material properties, including Young’s modulus and coefficient of thermal expansion (CTE). Adhering to the variational principles of solid mechanics and linear thermoelasticity, we formulate the displacement field calculation of the gyroscope considering ring-beam continuity/boundary constraints. We use the Ritz method to convert and solve the subsequent optimization problems as quadratic programs (QPs). We obtain analytical expressions for the stiffness matrix variations under thermal stresses. These results distinguish terms induced by nonhomogeneous boundary conditions from those caused by thermal deformations in the gyroscope’s moving structure. Such boundary conditions account for 1) expansion/contraction of the internal suspension and 2) thermo-mechanical effects due to the different CTEs across MEMS layers, including the glass substrate and the die-attach material. We compare our method against finite element simulations and validate it using experimental data from our 58 kHz, 3.2 mm-diameter gyroscope.
多环MEMS陀螺仪的热应力:数学建模与实验验证
温度可以说是影响MEMS陀螺仪性能的主要环境变量。然而,对温度影响下的固体力学的研究和表述,特别是关于热应力的研究,在文献中仍未得到充分的探讨。为了解决这个问题,我们提出了一个新的框架来数学模拟热应力对多环陀螺仪刚度矩阵的影响。我们还考虑了材料性能的温度依赖性,包括杨氏模量和热膨胀系数(CTE)。根据固体力学和线性热弹性的变分原理,建立了考虑环束连续/边界约束的陀螺仪位移场计算公式。我们使用Ritz方法将后续的优化问题转换为二次规划(qp)并求解。得到了热应力作用下刚度矩阵变化的解析表达式。这些结果区分了由非均匀边界条件引起的项和由陀螺仪运动结构中的热变形引起的项。这样的边界条件解释了1)内部悬浮物的膨胀/收缩和2)由于MEMS层(包括玻璃基板和模贴材料)上不同的cte而产生的热机械效应。我们将我们的方法与有限元模拟进行了比较,并使用58 kHz, 3.2 mm直径陀螺仪的实验数据验证了它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信